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Preface

Lasers are paradigmatic examples of nonlinear systems and have played a decisive
role in the development of nonlinear dynamics into a cross disciplinary subject over
the past 40 years. Already a free running laser represents a nontrivial nonlinear
system, but even more interesting phenomena arise when lasers are subjected to
feedback or coupled to build large networks. Some of these phenomena already
found their way to industrial applications, for example, the creation of ultrashort
pulses with the mode locking technique by using integrated multisection devices or
the stabilization of laser outputs with optical injection. The technological advances
in semiconductor processing technologies also allow to produce a variety of lasers
with nanostructured active regions that give rise to interesting physics and allow
designing new innovative devices.

Nowadays, nonlinear laser dynamics is a still growing field of active research, and
this book focuses and reviews recent advances in this area. In an interdisciplinary
approach, it will concentrate on mathematical, physical, as well as experimental
aspects. By discussing problems such as the modeling of integrated devices, the
creation of networks, exploitation of chaotic lasers for secure communication, and
the use of nanostructured lasers for logic gates and memory elements, it will enter
innovative grounds and hopefully inspire future research on that topic.

On the occasion of the sixtieth birthday of Prof. Eckehard Schöll, this book is also
intended to recognize the work during his scientific career, as he always enforced
the connection between rigorous mathematical analysis and physical modeling. For
this reason, the contributors are former and future collaborators of Prof. Eckehard
Schöll.

The book is separated into three parts. Within the first part, ‘‘Nanostructured
devices’’, the dynamic properties and modeling aspects of Quantum Dot Lasers,
Vertical Cavity Surface Emitting Lasers, and Quantum Cascade Lasers are reviewed,
while the second part ‘‘Coupled Laser Devices’’ focusses on the complex dynamics
and bifurcations induced by self coupling, delay coupling, or mode coupling of
lasers. The third part, ‘‘Synchronization and Cryptography’’, discusses the chaotic
dynamics of excitable systems and their application for secure communication or
for the generation of synchronized cluster states in networks.
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I am grateful to the group of Prof. Schöll for their enduring support during the
compilation of this volume and to the staff from Wiley VCH for their excellent
help.

Berlin, February 2011 Kathy Lüdge
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1
Modeling Quantum-Dot-Based Devices
Kathy Lüdge

1.1
Introduction

During the past decades, the performance of semiconductor lasers has been dra-
matically improved from a laboratory curiosity to a broadly used light source.
Owing to their small size and low costs, they can be found in many commercial
applications ranging from their use in DVD players to optical communication net-
works. The rapid progress in epitaxial growth techniques allows to design complex
semiconductor laser devices with nanostructured active regions and, therefore,
interesting dynamical properties. Future high-speed data communication applica-
tions demand devices that are insensitive to temperature variations and optical
feedback effects, and provide features such as high modulation bandwidth and
low chirp, as well as error-free operation. Currently, self-organized semiconductor
quantum dot (QD) lasers are promising candidates for telecommunication applica-
tions [1]. For an introduction to QD-based devices, their growth process, and their
optical properties, see, for example, [2, 3].

This review focuses on the modeling of these QD laser devices and on the
discussion of their dynamic properties. It uses a microscopically based rate equation
model that assumes a classical light field but includes microscopically calculated
scattering rates for the collision terms in the carrier rate equations, as introduced
in [4–8]. Following the hierarchy of different semiconductor modeling approaches
(for an overview, see [9]), this model aims to be sophisticated enough to permit
a quantitative modeling of the QD laser dynamics but still allows an analytic
treatment of the dynamics. Different levels of complexity will be explored to enable
comprehensive insights into the underlying processes.

In order to reduce the numeric effort and still allow for analytic insights, a variety
of effects have been neglected. This way, a different approach has to be chosen
if, for example, the photon statistics of the emitted light [10] or changes in the
emission wavelength due to Coulomb enhancement effects [11, 12] are to be of
interest. For the analysis of ultrafast phenomena, as, for example, the gain recovery
in QD-based optical amplifiers [13], coherent effects resulting from the dynamics of
the microscopic polarization become important, and the model has to be extended

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.



4 1 Modeling Quantum-Dot-Based Devices

to semiconductor Bloch equations. This has been intensively studied in [14, 15]
in good agreement with experimental results [16], but it will not be discussed in
this review. Note that later on in this book, the experimental results obtained with
QD lasers under optical injection are presented in Chapter 3 (by Sciamanna [17]),
and the results regarding the sensitivity of QD lasers to optical feedback [18] are
discussed in Chapter 6 by Erneux et al. [19].

After a detailed introduction to the microscopical modeling aspects in Section
1.2, the turn-on and switching dynamics of a QD laser with two confined levels is
discussed in Sections 1.3 and 1.4, and temperature effects are analyzed in Section
3.1. In Section 1.5, the results of an asymptotic analysis of the rate equation systems
are presented, which allows to give analytic expression to relaxation oscillation (RO)
frequency and damping of the turn-on dynamics, and thus allows to predict the
modulation properties of the laser. Resulting from the analytic predictions, the
effect of using a doped carrier reservoir on the laser dynamics is investigated in
Section 1.6. At the end, in Section 1.7, the results are discussed and compared to
quantum well (QW) laser devices.

1.2
Microscopic Coulomb Scattering Rates

A schematic view of the QD laser structure is shown in Figure 1.1a. The active
area of the p–n heterojunction is a dot-in-a-well (DWELL) structure that consists of
several InGaAs QW layers that have a height of about 4 nm, and contain embedded
QDs that are confined in all three dimensions having a size of approximately
4 nm × 18 nm × 18 nm. During laser operation, an electric current is injected into

S in,rel
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Figure 1.1 (a) Schematic illustration of
the QD laser. (b) Energy diagram of the
band structure across two QDs in the
electron–hole picture. hνGS labels the ground
state (GS) lasing energy. �Ee and �Eh mark
the distance of the GS from the band edge
of the 2D carrier reservoir (QW) for elec-
trons and holes, respectively. �e and �h de-
note the distance to the bottom of the QD,

which is equal to the energetic distances be-
tween the GS and the excited state (ES) in
the QD. FQW

e and FQW
h are the quasi-Fermi

levels for electrons and holes in the QW, re-
spectively. The different processes of direct
electron and hole capture (Sin,cap), as well
as relaxation (Sin,rel) into the QD states, are
indicated with gray arrows.



1.2 Microscopic Coulomb Scattering Rates 5

the QW layers. They form the carrier reservoir where carrier–carrier scattering
events take place because of Coulomb interaction and lead to a filling (or depletion)
of the confined QD levels. As a result, carrier inversion is reached first between the
lowest confined QD levels in the conduction band and its counterpart in the valence
band. Since the size and the composition of the zero-dimensional QD structures
determine the energetic position of the QD levels, it is possible to design lasers
with different emission wavelengths. The lasers discussed here have a ground state
(GS) emission wavelength of 1.3 μm, as needed for optical data communication.

For high carrier densities in the reservoir, that is, during electrical pumping, the
Coulomb interaction (carrier–carrier Auger scattering) will dominate the scattering
rate into (and out of) the QDs, whereas the scattering events resulting from
carrier–phonon interaction are negligible [20]. Inside the QD, two confined energy
levels are modeled. Thus, direct capture processes for electrons (b = e) and holes
(b = h) into or out of the GS labeled as Scap

b,G , into or out of the excited state (ES) labeled
as Scap

b,E , and relaxation processes between GSs and ESs named Srel
b are considered

as depicted in Figure 1.1b, where gray arrows indicate the in-scattering events.
Section 1.2.1 systematically describes and quantifies the different Auger processes

before they are incorporated into the dynamic rate equation model in Section 1.3.
Note that although phonon scattering between the carrier reservoir (QW) and the
QDs is neglected, the fast phonon- assisted carrier relaxation processes within the
QW states are taken into account by assuming a quasi-Fermi distribution with
quasi-Fermi levels FQW

e and FQW
h for electrons in the conduction band and holes in

the valence band of the QW, respectively.

1.2.1
Carrier–Carrier Scattering

If the Coulomb interaction is treated in the second-order Born approximation in
the Markov limit up to second order in the screened Coulomb potential [21, 22],
a Boltzmann equation for the collision terms, which describe the change in the
occupation probability in the QD states, can be derived, and subsequently easily
incorporated into laser rate equation models (for details, see also [15]). The striking
difference from the standard rate equation models is that there are no constant
relaxation times. Instead, the detailed modeling of the scattering events inside the
reservoir leads to scattering times that are nonlinearly dependent on the carrier
densities in the reservoir.

Figure 1.2 gives a systematic overview of all processes leading to in-scattering into
the QD electron levels. The gray arrows denote electron transitions of the scattering
partners. Panels I and III show pure e–e processes, while panels II and IV display
mixed e–h processes. The corresponding processes for in-scattering into the QD
hole levels are obtained by exchanging all electron and hole states. The out-scattering
processes are obtained by inverting all arrows of the electron transitions. The
exchange processes of pure e–e capture processes contributing to the scattering
rates are not shown, since there is no qualitative difference from that of the direct
processes. In case of mixed e–h processes (II, IV), the exchange processes lead to



6 1 Modeling Quantum-Dot-Based Devices
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Figure 1.2 Electron transitions during
Auger scattering processes (gray arrows de-
note electron transitions): (a) direct electron
capture from the 2D carrier reservoir to the
QD ground state (I, II) and first excited state

(III, IV). Panels I and III and panels II and
IV show pure e–e and mixed e–h scattering
processes, respectively. (b) QW-assisted in-
tradot electron relaxation to the QD ground
state.

transitions across the band gap, which are neglected since they are unlikely to occur.
Note that the process shown in panel III of Figure 1.2b is the exchange process
of the one in panel I. In the following, the scattering events shown in Figure 1.2
are decomposed into contributions originating from direct carrier capture from
the QW into the QD levels Rcap

m (Figure 1.2a) and relaxation processes between
the QD states with one and two intra-QD transitions Rrel′ and Rrel′′ , respectively
(Figure 1.2b). Processes involving three QD states are neglected. Thus, the collision
term in the Boltzmann equation for the carrier occupation probability in the QD
states ρm

b , where m labels the quantum number of the 2D angular momentum of
the confined QD states (m = E for the first ES; m = G for the GS) reads:

∂ρm
b

∂t
|col = Rcap

b,m + Rrel′
b + Rrel′′

b (1.1)

The contribution to Eq. (1.1) from direct capture processes (Figure 1.2a) can be
expressed as

Rcap
b,m = Sin,cap

b,m (1 − ρm
b ) − Sout,cap

b,m ρm
b (1.2)

where the direct capture Coulomb scattering rates for in-
(

Sin,cap
b,m

)
and

out-scattering
(

Sout,cap
b,m

)
are defined as

Sin,cap
b,m =

∑
k1k2k3,b′

Wb

kb
1kb′

3 kb′
2 m

f
kb
1
f
kb′
3

(
1 − f

kb′
2

)
(k1→m, k3→k2), (1.3)

Sout,cap
b,m =

∑
k1k2k3,b′

Wb

m kb′
2 kb′

3 kb
1

(
1 − f

kb
1

)(
1 − f

kb′
3

)
f
kb′
2

(m→k1, k2→k3). (1.4)

States in the QW are labeled by the in-plane carrier momentum kb
i (b = e and

b = h indicate conduction and valence band states, respectively). For both bands
in the QW, f

kb
i

indicates the electron occupation probability. The transition

probability Wb
k1k2k3m′ for a process where two carriers scatter from initial states k1

and k3 to the final states m and k2, respectively, (k1 → m, k3 → k2) contains the
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screened Coulomb matrix elements for direct and exchange interactions, and the
energy-conserving δ-function [6, 15]. Owing to the microscopic reversibility of the
Coulomb matrix elements, the transition probability is equal for reversed direction
Wb

kb
1kb′

3 kb′
2 m

= Wb

mkb′
2 kb′

3 kb
1

.

The relaxation processes shown in Figure 1.2b describe a redistribution of
carriers within the intra-QD levels. The contribution from processes I and II to Eq.
(1.1) is given by

Rrel′
b = Sin,rel′

b ρEb (1 − ρGb ) − Sout,rel′
b (1 − ρEb )ρGb . (1.5)

The relaxation in-scattering rate is given by

Sin,rel′
b =

∑
k2k3,b′

Wb

E kb′
3 kb′

2 G

(
1 − f

kb′
2

)
f
kb′
3

(E→G, k3→k2). (1.6)

The dynamical equations for the processes III and IV (Rrel′′ ) in Figure 1.2b can be
obtained in a similar manner as in Eq. (1.5).

For the calculation of the Coulomb scattering rates, a quasiequilibrium within the
QW states (fast phonon scattering inside one band) but nonequilibrium between the
QW electrons and the QD electrons, the QW holes, and the QD holes is assumed.
As a result, the electron occupation probability fkb in the conduction (b = e) and
valence band (b = h) of the QW can be expressed by a quasi-Fermi distribution
given by

fkb =
[

exp

(
Ek − FQW

b

kT

)
+ 1

]−1

(b = e, h). (1.7)

The quasi-Fermi levels FQW
b are determined by the total carrier density in the

respective band via the relation given in Eq. (1.8), as shown in [7, 23],

FQW
b (wb) = EQW

b ± kT ln
[

exp
(

wb

DbkT

)
− 1

]
(1.8)

where the + and − signs correspond to electrons and holes, respectively. Further-
more, Db = mb/(π�

2) is the 2D density of states, with the effective masses mb of
electrons (b = e) and holes (b = h), respectively. EQW

b are the QW band edges of
conduction and the valence band, respectively. Note that the analytic expression
Eq. (1.8) is only valid for a 2D electron gas, where the integrals

we =
∫ ∞

E
QW
e

dEkDe fke and wh =
∫ E

QW
h

−∞
dEkDh(1 − fkh ) (1.9)

can be solved. As a result, the quasi-Fermi distributions fke and fkh are determined
by the QW carrier densities we and wh, and thus, the scattering rates given in Eqs.
(1.3) and (1.6) are calculated as functions of we and wh. Besides that, the scattering
rates parametrically depend on the effective masses of the carriers in the QW bands
and on the band structure given by the energetic distances �Eb and �b, as indicated
in Figure 1.1b. The resulting rates are shown in Figure 1.3 as a function of we along
the line wh/we = 1.5. For the relaxation rates, the sum of all relaxation processes
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Figure 1.3 Coulomb scattering rates of
the QDs-in-a-well system versus QW elec-
tron density we (wh/we = 1.5). (a) Intra-QD
relaxation rates for electrons (gray) and
holes (black); (b) and (c) direct capture

rates into the GS (dashed line) and ES (dot-
ted line) for holes and electrons, respec-
tively. Top and bottom panels show in- and
out-scattering rates, respectively. Parameters
as in Table 1.1.

is plotted but note that the rates involving a transition within the QD accompanied
by a QW transition (rel′) are much larger than the rates involving two QW–QD
transitions (rel′′). The relaxation rates are characterized first by a sharp increase and
later by a decrease in higher carrier densities because of the effect of Pauli blocking.
These relaxation scattering events are on a ps time scale, whereas the direct capture
rates plotted in Figure 1.3b,c for holes and electrons are an order of magnitude
smaller for small carrier densities. Owing to their small effective mass, the rate
for electron capture is much smaller, although the dependence on we is similar to
that of the hole rate. For small electron densities inside the QW, the capture rates
increase quadratically with we, which is expected from mass action kinetics.

1.2.2
Detailed Balance

In thermodynamic equilibrium, there is a detailed balance between the in- and
out-scattering rates of the QD level. This allows one to relate the rate coefficients of
in- and out-scattering even for nonequilibrium carrier densities [24].

For a single scattering process between two carriers of type b and b′, the
in-scattering rate for capture into the GS (m = G) or ES (m = E) is defined in Eq.
(1.3), and can be rewritten as

Wb

kb
1kb′

3 kb′
2 m

f
kb
1
f
kb′
3

(1 − f
kb′
2

) (1.10)

= Wb

kb
1kb′

3 kb′
2 m

(1 − f
kb
1
)(1 − f

kb′
3

)f
kb′
2

f
kb
1

1 − f
kb
1

f
kb′
3

1 − f
kb′
3

1 − f
kb′
2

f
kb′
2

(1.11)

= Wb

kb
1kb′

3 kb′
2 m

(1 − f
kb
1
)(1 − f

kb′
3

)f
kb′
2

exp

⎡
⎣FQW

e − E
kb
1

− E
kb′
3

+ E
kb′
2

kT

⎤
⎦ (1.12)
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if the quasi-Fermi distribution given in Eq. (1.7) is used, which leads to fk/(1 − fk) =
exp

[
(FQW

e − Ek)/(kT)
]
. Inserting the energy conservation of final and initial states,

E
kb′
2

− E
kb′
3

− E
kb
1

+ EQD
b,m = 0, where EQD

b,m is the confined QD energy (m = G,E) for

electrons (b = e) or holes (b = h), and summing overall initial and final states in
k-space gives

Sin,cap
b,m = Sout,cap

b,m e

±
(

F
QW
b −E

QD
b,m

)
kT = Sout,cap

b,m e
�Eb,m

kT

[
e

wb
DbkT − 1

]
(1.13)

where �Eb,G = ±(EQW
b − EQD

b,G ) and �Eb,E = ±(EQW
b − EQD

b,E ) are the energetic dis-
tances from the QW band edge to the GS and the ES of the QD, respectively, and
the + and − signs correspond to electrons and holes, respectively.

Note that Eq. (1.13) holds for the mixed e–h Auger capture process (b �= b′) as

well as for the e–e and h–h processes. Thus, besides the Boltzmann factor e
�E
kT

that is valid for a discrete two-level system with energy difference �E, the ratio
(Sin

b /Sout
b ) for Auger scattering between the 2D electron gas of the QW and the

discrete QD level also depends on the quasi-Fermi levels FQW
b , and thereby on

the carrier density in the QW. As a result of this carrier-density-dependent factor in
the detailed balance relation, the out-scattering rates show a pronounced maximum
around the degeneracy concentration DbkT , as can be seen in the bottom panel of
Figure 1.3b,c.

In contrast to that, the ratio between the in- and out-scattering relaxation rates is
a constant factor since both involved levels are indeed localized. For the positively
defined energy difference �b (b = e, h) between ES and GS (Figure 1.1b), the
relation reads:

Sin,rel
b = Sout,rel

b e
�b
kT (1.14)

1.3
Laser Model with Ground and Excited States in the QDs

Using the microscopic scattering rates defined in the last section, an eight-variable
rate equation system can be formulated, which contains the Boltzmann collision
terms for the direct capture processes, Rcap

b,m, defined in Eq. (1.2), and those
for relaxation into the GS, Rrel

b , defined in Eq. (1.5). As used earlier for the
scattering contributions in Section 1.2, carrier densities in the GS and ES have
the index G and E, respectively, and the index b labels the carrier type. Further,
the photon densities nGph and nEph are introduced, which result from the GS and
ES transition in the QD, respectively. Starting from the occupation probability
of the confined QD levels ρ

G,E
b , the carrier densities in the QD are defined

by nG,E
b = NQDνG,Eρ

G,E
b . NQD denotes twice the QD density of the lasing subgroup

(the factor of 2 accounts for spin degeneracy), and νG,E is the degeneracy of the states
(νG = 1, νE = 2).
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The induced processes of absorption and emission at the GS wavelength are
modeled by a linear gain RG

ind = WA(nGe + nGh − NQD) nGph, where W is the Einstein
coefficient that can be determined from a full quantum mechanical approach of
the light matter interaction [9], and A is the in-plane area of the QW. Analogous
to the simple two-level system, the model introduced above yields positive gains
if the occupation probability of electrons in the localized conduction band level
f C
e = ρGe = nGe /NQD of the QDs is higher than the occupation probability of electrons

in their localized valence band level f V
e = 1 − ρGh . Thus, the linear gain term

Rind = WANQD(f C
e − f V

e ) nph = WANQD(f C
e (1 − f V

e ) − f V
e (1 − f C

e )) nph corresponds
to the standard net rate of stimulated emission minus absorption [25]. The rate of
induced emission at the ES wavelength is obtained analogously, but by assuming a
different Einstein coefficient W; thus, RE

ind = WA(nEe + nEh − 2NQD) nEph. As a result
of the size distribution and material composition fluctuations of the QDs, only
a subgroup (QD density NQD) of all QDs (Nsum) matches the mode energies for
lasing. The QD density Nsum is twice the total QD density as given by experimental
surface imaging (again, the factor of 2 accounts for spin degeneracy). As discussed
below, NQD is not a constant but can increase with increasing pump current if the
number of longitudinal modes in the laser output is increased (see Figure 1.9a for
experimental lasing spectra).

The nonlinear rate equations (Eqs. (1.15)–(1.19)) describe the dynamics of the
charge carrier densities in the GS and ES of the QDs, nGb and nEb , respectively, the
carrier densities in the QW, wb, and the photon density emitted from the GS and
the ES, nGph and nEph, respectively.

ṅEb = NQD(2Rcap
b,E − Rrel

b ) − WA(nEe + nEh − 2NQD)nEph − WnEe ρEh , (1.15)

ṅGb = NQD(Rcap
b,G + Rrel

b ) − WA(nGe + nGh − NQD)nGph − WnGe ρGh (1.16)

ẇb = η
J(t)

e0
− Nsum

[
Rcap

b,G + 2Rcap
b,E

]
− Bwewh, (1.17)

ṅGph = −2κnGph + 
WA(nGe + nGh − NQD)nGph + βWnGe ρGh (1.18)

ṅEph = −2κnEph + 
WA(nEe + nEh − 2NQD)nEph + βWnEe ρEh (1.19)

The spontaneous emission in each level of the QDs is approximated by bimolecular
recombination using RG

sp(nGe , nGh ) = WnGe nGh/NQD and RE
sp(nEe , nEh ) = WnEe nEh/(2NQD).

The loss rate Rb
loss = Bwewh, accounting for carrier losses in the QW, is a sum

of the spontaneous band–band recombination and Auger-related losses inside
the QW [26]. This loss rate determines the lifetime τ b

w of carriers in the QW
(Rb

loss ≡ wb/τ
b
w), which is on the order of several nanoseconds and decreases

with the carrier densities wb. β is the spontaneous emission coefficient, and

 = 
gNQD/Nsum is the optical confinement factor. 
 is the product of the
geometric confinement factor 
g (i.e., the ratio of the volume of all QDs and the
mode volume), and the ratio NQD/Nsum (accounting for reduced gain since only
a subgroup of all QDs matches the mode energy for lasing because of the size
distribution and material composition fluctuations of the QDs). The coefficient
2κ = (c/√εbg)[κint − ln(R1R2)/2L] expresses the total cavity loss [2], where L is
the cavity length, and R1 and R2 are the facet reflectivities, and κint are the
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internal losses [6]. J is the injection current density, eo is the elementary charge,
and η = 1 − we/NQW is the current injection efficiency that accounts for the fact
that the injection into the QW is blocked if the QW is already filled (maximum
density inside the QW: we = NQW). Note that within the model the carriers are
directly injected into the QW, leading, of course, to an underestimation of the
experimentally realized current densities. Therefore, only current densities relative
to the threshold value Jth are considered for comparisons between theory and
experiment. The values of parameters used for the simulations are listed in
Table 1.1, if not stated otherwise.

The steady-state characteristics and the turn-on dynamics for the QD laser
as resulting from the nonlinear rate equations (Eqs. (1.15)–(1.19)) are depicted in
Figure 1.4. The input–output curves in Figure 1.4b show that with increasing pump
current, the GS first reaches inversion and starts lasing at the GS threshold current
JGth. By further increasing the pump current, the ES reaches its lasing threshold JEth
and the laser emits light at both wavelengths. As can be seen in Figure 1.4b, the
GS efficiency is reduced as soon as the ES lasing sets in. The turn-on dynamics
observed before reaching the steady states is shown in Figure 1.4a,c. For currents
above JGth but far below JEth, highly damped ROs are found for the GS turn-on
trajectories (Figure 1.4a) in accordance with experimental results [26]. Above JEth,
the ES turns on with very short turn-on delay times and damped ROs (gray line
in Figure 1.4c), while the GS shows overdamped turn-on behavior (black line in
Figure 1.4c). The overdamped behavior is due to the high current needed to invert
the ES levels, which is accompanied by high carrier densities in the reservoir and
thus by high scattering rates into the GS (see Section 1.5 for analytic discussions
of the damping rate, which depends on the carrier lifetimes).

The ratio of the threshold currents of the two modes, JEth/JGth, depends on the
values of the carrier capture and relaxation rates and can be changed by varying
the band structure of the QD–QW system. A system where the QW band edge
is very close to the ES leads to a faster filling of the ES and thus to a smaller
JEth (compare Figure 1.4b and Figure 1.6c that show the input–output curves for
different confinement energies). Besides this microscopic effects, the ratio JEth/JGth
also depends on the device length. Length-dependent measurements of this ratio

Table 1.1 Numerical parameters used in the simulation, unless stated otherwise.

Symbol Value Symbol Value Symbol Value

W 0.7 ns−1 A 4 × 10−5cm2 �Ee 210 meV
W 0.88 ns−1 NQD 0.6 × 1010cm−2 �Eh 50 meV
B 0.5 nm2 ps−1 Nsum 6 × 1010cm−2 �e 64 meV

g 0.06 NQW 1 × 1012cm−2 �h 6 meV
2κ 0.16 ps−1 β 5 × 10−6 De/h me/h/(π�

2)
R1, R2 0.32 L 1 mm me 0.043 m0

εbg 14.2 κint 650 m−1 mh 0.45 m0
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JGth = 1.5 × 1010e0 cm−2 ps−1. Parameters
as in Table 1.1 but �Ee = 134 meV, �Eh =
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can be found in [27], showing that the shorter the device the smaller is JEth, while JGth
increases. This is in good agreement with our simulations.

The threshold current JGth can be obtained from Eqs. (1.15)–(1.19) by deriving the
steady-state characteristics of the laser. By neglecting spontaneous emission and
photons from the ES transition (β = 0; nEph = 0), this leads to

nGph
∗
(J) = JGth


NQD

2κNsum

(
J

JGth
− 1

)
(1.20)

JGth = Bwe|thwh|th + Nsum

(NQD)2

(
WnGe |thnGh |th + WnEe |thnEh |th

)
. (1.21)

Eq. (1.21) shows that JGth depends upon the loss terms in the rate equations. Thus,
the parameters B, W, and Nsum, as well as the carrier densities at threshold, labeled
with the subscript |th in Eq. (1.21), determine JGth. The threshold carrier densities are
determined by the different scattering contributions (they do not depend on B and
Nsum). However, owing to the nonlinear dependence of the Auger scattering rates
upon the QW carrier densities, it is not possible to give closed analytic expression
(see [7] for approximations). The ES threshold current JEth also depends on the
photon density in the GS, which depends on the pump current and the differential
gain. The analytic expression reads:

JEth = JGth + 2κNsum


NQD
nGph. (1.22)

Since the microscopic model allows for a separate treatment of electron and hole
dynamics, the transient behavior of both species will be investigated. Figure 1.5a,b
shows the trajectories of the turn-on process projected onto the (nGb , nGph)-planes.
The familiar anticlockwise rotation can be seen for the electron as well as for the
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hole density. Nonetheless, their shape is different. The black stars in Figure 1.5a,b
denote the steady state values of the electron and hole concentration in the GS
levels, nGe

∗ and nGh
∗, respectively, for increasing pump currents. It is interesting to

note that the value of nGe
∗ decreases with J. This is anomalous because the carrier

concentration for conventional lasers is clamped at the threshold value (saturation
of inversion). Nevertheless, the inversion of the QDs is saturated as the total
number of carriers, namely, the threshold density nGt = nGe

∗ + nGh
∗, is a constant

that depends only on the material parameters and not on the pump current. nG
t

can be obtained by neglecting spontaneous emission in Eq. (1.18) and setting
ṅGph = 0:

nGt = nGe
∗ + nGh

∗ = 2κ


WA
+ NQD. (1.23)

Figure 1.5 also reveals that the steady-state values of nGe
∗ and nGh

∗ differ a lot. While
in the steady state most of the QDs are occupied by an electron, only every fifth hole
state is filled. This effect is due to the high out-scattering rates for the holes, which
inhibits effective filling of the states. As known from the microscopic scattering
rates plotted in Figure 1.3, the hole out-scattering rate decreases with the carrier
density in the reservoir and thus with the pump current. This leads to higher nGh

∗

for higher currents (see [7] for detailed steady-state analysis of a QD laser with one
confined level).

As can be seen in the phase portrait of Figure 1.5c, the turn-on process projected
onto the (ne, nh)-plane deviates from a straight line (which corresponds to the
synchronized behavior ne ∼ nh) and instead performs a spiral ending in the fixed
point (steady state). This desynchronization between electron and hole dynamics is
due to the different carrier lifetimes that stem from the different effective masses
and the resulting different energy separation between QW band edge and confined
QD level (�Ee and �Eh in Figure 1.1b).
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ters as in Table 1.1 but B = 0.2 nm2 ps−1,
�Ee = 134 meV and �Eh = 30 meV.
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1.3.1
Temperature Effects

So far, all simulations have been performed at a constant temperature of 300 K.
In this section, the model is refined to account for carrier heating during laser
operation. For the shift in the device temperature inside an electrically pumped
optical amplifier (with identical active region as the laser diode considered here)
Gomis-Bresco et al. [13] found values of �T = 60 K at a pump current of I =
150 mA, which is about 10 times JGth. Their measurement suggests a functional
relationship of �T(J) ∼ J2, which is adapted by implementing �T(we) ∼ (we)2

(see Eq. (1.24)). It is noted that the steady-state relation w∗
e (J) plotted for the

discussed model in Figure 1.6f depends on the microscopic details of the scattering
processes and is thus different for a QD laser with only one GS as in [26]. The
physical reason for the carrier heating lies first in the facts that the carriers are
injected into higher k-states during the electrical pumping. Second, the Auger
scattering processes between QD and QW lead to scattering into high energy states
inside the QW. Both effects change the carrier distribution and if the carriers in the
reservoir do not have time to cool down to the lattice temperature, their temperature
stays increased. (See [28] for a detailed kinetic modeling of the relaxation processes
that allow to determine the carrier temperature from their distribution in k-space
and [29] for microscopic calculations of the carrier heating in the low-density
limit.) Consequently, the temperature entering the scattering rates is actually not
the lattice temperature but the temperature of the carriers inside the QW that
surrounds the QDs.
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T = 300 K + ζ · (we/(we|th)
)2

(1.24)

Note that an approach to directly implement T(J), as in [30], suffers from the prob-
lem that a large signal modulation of the current leads to unphysical instantaneous
switching in the temperature. An alternative approach is to determine the carrier
heating from an additional rate equation for the energy density of the carriers in
the reservoir [31].

Since the temperature enters the quasi-Fermi distribution that is assumed inside
the QW, the microscopic scattering rates were calculated for several tempera-
tures and implemented into the numeric simulation by approximated analytic
expressions:

Sin
e (T , we, wh) = (1 + 0.22(T − 300 K)/100 K) · Sin

e (300 K, we, wh)

Sin
h (T , we, wh) = (1 + 0.26(T − 300 K)/100 K) · Sin

h (300 K, we, wh)

The out-scattering rates are related to the in-scattering rates by the detailed balance
relations derived in Eqs. (1.13) and (1.14). Figure 1.6c,d shows the changes in
the laser turn-on and steady-state dynamics if a dynamic temperature given by
Eq. (1.24) is implemented for different constants ζ . The carrier temperature T
and the carrier density in the reservoir we for the three cases are plotted in
Figure 1.6e,f, respectively, as a function of J. Below the ES threshold current, the
increasing temperature leads to a reduction in the differential efficiency of the GS
steady-state characteristics as can be seen in Figure 1.6d. Furthermore, it reduces
the ES threshold JEth, which results in two-state lasing at smaller pump currents
(Figure 1.6c). In contrast to the case with constant T , the GS lasing is reduced as
soon as the light is emitted from the ES. For high values of ζ , the GS lasing is
completely suppressed. The turn-on dynamics of the ES is also affected by the high
temperature (Figure 1.6a). Mainly due to the increased scattering rates at high T ,
the turn-on process becomes overdamped without a pronounced relaxation peak.
At low currents close to the GS threshold JGth, the temperature does not change
much and, thus, the turn-on process is also nearly unchanged (Figure 1.6b).

If these results are compared to two-state lasing experiments, a good agree-
ment can be found. The suppression of the GS emission is indeed observed in
experiments done by Wu et al. [32] on InP devices or by Ji et al. [30] on GaAs QD
devices.

1.3.2
Impact of Energy Confinement

The energy diagram of the QD laser structure along the in-plane direction is
shown in Figure 1.1. In principle, the sum �Eh + �Ee can be determined from
photoluminescence experiments that measure the energy of the GS emission of the
QD (hνGS) and the wavelength of the QW emission. However, for the devices used
here, there is a large uncertainty for the position of the QW band edge. Increasing
the distance to the QD confined levels reduces the capture rates but does not have
a large effect on the relaxation rates between the QD states. Simulations of the QD
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laser with larger confinement energies �Ee and �Eh show two major changes in
the dynamics. At first, the ratio between the threshold currents JEth/JGth increases,
as can be seen by comparing the steady-state characteristics shown in Figure 1.4b
with the simulations for larger confinement energies in Figure 1.6c. The effect can
be explained with the reduced capture rates into the ES, which inhibit an effective
filling of the ES.

Another change in the dynamics that results from changes in the confinement
energies is the reduced damping of the ROs. This can be seen if the GS turn-on in
Figure 1.6b for higher �Ee(�Eh) = 210(50) meV is compared to the turn-on with
smaller �Ee(�Eh) = 134(30) meV in Figure 1.4a. Similar to the case of a damped
harmonic oscillator, the damping of the turn-on dynamics determines the response
of the laser to a pump current that is modulated with a certain frequency and a small
modulation amplitude. Modulation response curves obtained for different pump
currents (close to the GS threshold) as a function of the modulating frequency are
plotted in Figure 1.7a,c for the two different confinement energies discussed so far.
Note that the parameter for the losses in the reservoir, B, is different in both cases to
yield equal threshold currents of Jth = 3.4 × 108e0 cm−2 ps−1 and thus, according
to Eq. (1.39), an RO frequency that is also observed in experiments (Figure 1.7b).
The modulation response for the less damped case shown in Figure 1.7a shows
a pronounced maximum at the frequency of the ROs, whereas it disappears for
the strongly damped case in Figure 1.7c. The explanation for the impact of the
confinement energies on the damping rate is given later on by using asymptotic
methods in Section 1.5. There it is shown that the scattering rates, that is, the
carrier lifetimes, determine the damping of the turn-on process, and increasing
the lifetimes (decreasing the rates) of the smaller species (electrons) reduces the
damping. The total lifetimes (including all capture and relaxation processes) of the
GS levels are plotted in Figure 1.8a as a function of J for the two different cases
discussed above. Obviously the lifetimes are decreased by decreasing �Eb but in
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(b) and (c) show effective in- and out-scattering capture
rates, respectively, resulting from adiabatic elimination of the
ES variables according to Eq. (1.26).

both cases, the hole lifetimes are an order of magnitude smaller than those of the
electrons.

1.3.3
Eliminating the Excited State Population Dynamics

One way to simplify the eight-variable rate equation system for the case where light
is only emitted from the GS is to eliminate the ES carrier populations. This can be
done by adiabatic elimination, which assumes a fast relaxation of the ES variables
to their steady-state values and thus assumes ṅEb = 0. Using Eq. (1.15) gives

nEb (we ,wh ,nG
b
) = 2NQDS

cap,in
b,E +Srel,out

b
nG

b

S
cap,in
b,E +S

cap,out
b,E +(2NQD)

−1[
Srel,in

b
(NQD−nG

b
)+Srel,out

b
nG

b

] . (1.25)

Rewriting the remaining equations for wb and nGb leads to

ṅGb = (NQD − nGb )

[
nEb

Srel,in
b

2NQD
+ Scap,in

b,G

]
− RG

ind − RG
sp

−nGb

[
(2NQD − nEb )

Srel,out
b

2NQD
+ Scap,out

b,G

]
, (1.26)

ẇb = η
J(t)

e0
− NsumRcap

b,G −
[
Bwewh + 2NsumRcap

b,E

]
, (1.27)

Together with the unchanged equation for the photon density, Eq. (1.18), these
equations resemble the five-variable case of a QD laser with one confined level
if the terms in square brackets in Eq. (1.26) are interpreted as effective in- and
out-scattering rates. They are, of course, different if compared to the values resulting
from the pure GS scattering rates. The presence of the ES increases the scattering
rates because of the possibility of in- or out-scattering via the relaxation cascade.
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A comparison of the effective GS capture rates with the pure GS capture rates is
shown in Figure 1.8b,c.

As already expected from the analytic expression in Eq. (1.26), the rates increase
because of the relaxation rates that have to be added, but the overall nonlinear
dependence on the QW carrier densities stays unchanged. The electron in-scattering
rates increase by a factor of about 5, while a dramatic increase of 5 × 104 is
observed for the electron out-scattering. Nevertheless the out-scattering rates stay
an order of magnitude smaller than the in-scattering rates. For the holes the
situation is different. The much higher GS out-scattering rate is comparable to
the out-relaxation rate and for a large range of operation conditions the effective
out-scattering rate is higher than the effective in-scattering rate. The resulting
effective lifetimes of the GS levels for both carrier types, τ eff

b = (Sin,eff
b + Sout,eff

b )−1,
are plotted in Figure 1.8a.

Another effect that results from the presence of an ES in the QD laser system is
an increased loss rate in the equation for the QW carrier density (term in square
brackets in Eq. (1.27)). This leads to higher threshold currents and to a speedup of
the device.

To get a further insight into the correlations between the scattering rates and the
turn-on dynamics, Section 1.5 discusses the analytic approximation for frequency
and damping of the ROs of the QD laser. Before doing that, experimental results
of QD lasers will be compared to numeric results obtained with the reduced
five-variable rate-equation system.

1.4
Quantum Dot Switching Dynamics and Modulation Response

This section aims to discuss the modulation response and switching dynamics
in comparison with experimental results [26]. Because the experimental results
were obtained on a laser that showed only GS lasing, the reduced five-variable rate
equation system of Section 1.3.3 is used for the simulations. As all quantities now
refer to the GS, the superscript G is omitted in the following. The nonlinear rate
equations (Eqs. (1.28)–(1.32)) describe the dynamics of the charge carrier densities
in the QD GS, ne and nh, the carrier densities in the QW, we and wh (e and h
stand for electrons and holes, respectively), and the photon density nph of the GS
transition.

ṅe = Sin
e (NQD − ne) − Sout

e ne − WA(ne + nh − NQD)nph − Rsp, (1.28)

ṅh = Sin
h (NQD − nh) − Sout

h nh − WA(ne + nh − NQD)nph − Rsp, (1.29)

ẇe = η
J(t)

e0
− Nsum

NQD

[
Sin

e (NQD − ne) − Sout
e ne

] − B(we)wewh, (1.30)

ẇh = η
J(t)

e0
− Nsum

NQD

[
Sin

h (NQD − nh) − Sout
h nh

] − B(we)wewh, (1.31)

ṅph = −2κnph + 
WA(ne + nh − NQD)nph + βRsp. (1.32)
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Here, the scattering rates Sin
b and Sout

b (b = e, h) used for the following simulations
result from microscopic calculations that do not consider a second ES in the QDs.
Their values as a function of the carrier densities wb can be found in [8, 26].
Nevertheless, it is noted that similar results can been obtained with the full system
discussed in Section 1.3.

1.4.1
Inhomogeneous Broadening

The spectral properties of the laser output are not addressed in the model, as
the photon density is an average of all longitudinal modes inside the cavity.
However, changes in the number of longitudinal modes are taken into account
by changes in the active QD density NQD, which basically changes the gain of
the active medium. With a given QD size distribution pi (where i is the index
for a certain longitudinal mode frequency νi), the QD density participating in the
emission at a given frequency νi is NQD

i = piNsum. Thus, the density of all active
QDs is given by NQD = ∑

kpkNsum (the index k denotes the lasing longitudinal
modes). The mode spacing inside the cavity (L = 1 mm) is �hν = 0.17 meV(�λ =
0.22 nm), while the standard deviation of the QD size distribution [2] is about
σinh = 65 meV = 380 �hν. Thus, 70% of all QDs are active (NQD = 0.7 Nsum) if
the laser emits light at 380 longitudinal modes and only 3% (NQD = 0.03 Nsum)
for a laser linewidth of 3.5 nm. On the basis of the experimental lasing spectra
that show an increase in the lasing linewidth with increasing pump current
(Figure 1.9), the pump-current-dependent spectral properties of the active QDs are
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taken into account and NQD is implemented as a function of the QW carrier density
[26] (Eq. (1.33)).

NQD

10−4 nm−2
= 0.75 − 0.74 exp

(
− 106

1.75
w2

e

)
, (1.33)

A more rigorous way to implement inhomogeneous broadening, which occurs
in real devices because of fluctuations in QD size and material composition, and
directly affects the energy levels, is accounted for by assuming a Gaussian size
distribution around a central GS transition frequency ω0 with standard deviation

δω. The spectral QD density is then given by N(ω) = NQD√
2πδω

exp
[
− (ω−ω0)2

2δ2
ω

]
and

the total QD density NQD is approximated by a sum over a finite number of
subensembles NQD = ∑

jN
j = ∑

jN(ωj)�ω, where �ω denotes the spectral width
of the QD subgroups. Subsequently, a separate rate equation is used for each
subensemble. For details, see, for example, [15, 33].

1.4.2
Temperature-Dependent Losses in the Reservoir

In addition to the temperature dependence of the in- and out-scattering rates
discussed in Section 1.3.1, the carrier losses inside the reservoir will also be
modeled as a function of T . The effect of these T-dependent losses will be most
prominent for the large signal response of the laser while its effect on the turn-on
dynamics and modulation response is small. The rate Rloss = Bwewh that accounts
for these losses is a sum of the spontaneous bimolecular band–band recombination
and Auger-related losses inside the QW given by BAwewewh. The Auger coefficient
BA has been shown [34] to depend significantly on the temperature T , and is
therefore implemented such that it leads to a doubling of the rate for a temperature
change of 60 K (Eq. (1.24)) as found in [34]. Thus, BA = 305 nm4 ps−1

(
T

300 K

)4
is

used as given in [26]. Keep in mind that in this section a laser with only GS levels in
the QDs is modeled. Within the extended model described in Section 1.3, the Auger
scattering processes into the ES are already taken into account microscopically,
which results in a different BA for the remaining Auger processes within the QW.
An alternative approach to model temperature characteristics is described in [35]
by assuming nonradiative losses in the reservoir, which are modeled by capture
processes from the reservoir to a midgap defect level.

1.4.3
Comparison to Experimental Results

The laser diode used for the experiments was a ridge waveguide InAs/InGaAs
QD laser diode. The diode incorporates 15 stacks of QD layers having a DWELL
structure [36]. The ridge is etched through the active layer to reduce current
spreading [37] and to enhance wave guiding. The width of the ridge is 4 μm, while
the length is 1 mm. To use the diode in high-frequency modulation schemes, top
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p- and n-contacts in a ground-signal-ground (GSG) configuration, allowing the use
of high-speed, low-loss probe heads, have been processed. The threshold current
density Jexp

th at room temperature is 380 A cm−2 with an emission wavelength close
to 1.3 μm (Figure 1.9a). For pump currents, no ES lasing is found. Both facets
of the laser are as cleaved. The diode is mounted on a copper heat sink and
the light output is coupled to a standard single-mode fiber. A fiber-based isolator
is used to prevent any feedback from influencing the laser diode. Eye diagrams
have been obtained with an Agilent ParBert System, which creates an electrical
pseudorandom binary sequence (PRBS) in a nonreturn to zero configuration. Here,
a PRBS 5 (length: 25−1 bit) is used to make the results comparable to theoretical
calculations.

Figure 1.9b shows the optical response of the laser to an electrical PRBS 5 signal
switching between two levels (1.5 Jth and 3 Jth) of continuous wave (cw) operation.
Simulated and experimentally determined input signals (electrical words) are
shown in the upper panel of Figure 1.9b . Owing to the experimental setup (e.g.,
influence of cables and divider, oscilloscope noise), the measured pump-current
signal (black line) is not as flat as the simulated time trace (gray line). Despite this
small deviation, the measured optical response (black line, lower panel) matches the
simulated laser output (gray line, lower panel) very well. Note that this agreement
could only be achieved by including the dynamic parameters discussed in Section
1.4.1. For constant B, the relaxation peak that appears in the photon output after
switching to higher currents (Figure 1.9b lower panel at t = 4 ns) could not be
modeled because the long lifetime of the carriers in the QW inhibits fast changes
in the QW carrier densities.

By superposing every 3-bit sequences of the laser output shown in Figure 1.9b,
an eye diagram [38] is generated. These eye diagrams can be seen in Figure 1.10a,b,
which shows measured and simulated eye patterns, respectively, for switching
between two different current levels (left column: Jth 
→ 3 Jth and right column:
4 Jth 
→ 6 Jth) and for three different pulse repetition frequencies (2.5, 5 and
10 GHz). Exact agreement in the shape (overshoots, trace, and extinction ratio) of
the calculated and measured diagrams is found. Comparing the laser response for
the different current levels it can be concluded that in order to improve the eye
pattern diagrams, it is better to use higher current levels, as the relaxation peaks
are thereby suppressed. The cutoff frequency of this QD laser – which is related to
its RO frequency of 7 GHz – leads to a closing of the eyes already at 10 GHz. This
can be improved by using higher pump currents; however, the modeling predicts
that there is a trade-off since at the same time device heating results in further
reduction of the RO frequency.

1.5
Asymptotic Analysis

As discussed in the previous sections, the solution to the QD laser equations exhibits
different time scales that require accurate simulations. This section discusses an
alternative to computationally expensive studies by using asymptotic methods. They



22 1 Modeling Quantum-Dot-Based Devices

2.5 GHz

5 GHz

10 GHz

2.5 GHz

5 GHz

10 GHz

1Jth → 3J th
4J th → 6Jth

400

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)
In

te
ns

ity
 (

ar
b.

 u
ni

ts
)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

600 800 400200 600 800

200100 300 400

1000

100 200 300 400 500

50 100 150

Time (ps)(a)

200 50 100 150

Time (ps)

200

L RMS R RMS

L RMS R RMS

L RMS R RMS

L RMS R RMS

L RMS R RMS

R RMS

30

P
ho

to
n 

de
ns

ity
 (

10
4  c

m
−2

)

25

20

30

25

20

30

25

20

30

25

20

15

10

5

0

30

P
ho

to
n 

de
ns

ity
 (

10
4  c

m
−2

)
P

ho
to

n 
de

ns
ity

 (
10

4  c
m

−2
)

25

20

15

10

5

25

20

15

10

5

0

400 600 800 1000 200 400 600 800

100 200 300 400100 200 300 400 500

50

Time (ps)(b)

150100 200 50

Time (ps)

150100 200

2.5 GHz

5 GHz

10 GHz

2.5 GHz

5 GHz

10 GHz

1Jth → 3J th
4J th → 6Jth

Figure 1.10 (a) Measured and (b) simulated eye diagrams
for pump-current switching between 1Jth and 3Jth (left col-
umn) and between 4Jth and 6Jth (right column). Bit rep-
etition frequency varies between 2.5 GHz (first line) and
10 GHz (third line). (Reprinted from [26].)
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are motivated by the observation of quite different lifetimes between the carriers
and the photons in the cavity (γ = W/(2κ) ≈ 7 × 10−3). In order to simplify the
rate equations, it is recalled that semiconductor lasers admit the properties of class
B lasers. By applying approximation techniques appropriate for this class of lasers
[39], it is possible to expand the full rate equation system in orders of

√
γ . The

asymptotic techniques used for the analysis are described in detail in Chapter 6 [19],
while the main results, that is, the analytic expressions for damping and frequency
of the relaxation oscillations (ROs) of the laser, are discussed in the following. Note
that the asymptotic results are valid only for scattering lifetimes that are on the
order of several picoseconds or larger. For faster carriers the dynamics approaches
the one of QW lasers and different scalings have to be used for the asymptotic
analysis (see the limit large B in [46]).

The frequency ωRO of the ROs can be obtained from the leading order problem of
the expansion in powers of

√
γ (see [40] for details) and is also valid far away from

the fixed point. However, it is mathematically more convenient to determine the
damping of the RO from the linearized problem including both O(1) and O(

√
γ )

terms. Thus, the damping rate of the ROs equals the real part of the eigenvalue λ

of the characteristic polynomial of the linearized problem. To point out the effect
of the scattering lifetimes τe and τh on the damping rate, the eigenvalues λ are
computed as a function of the dimensionless parameter ae and ah defined as

a−1
e = (Sin

e + Sout
e )−1 · ωRO = τe · ωRO and a−1

h = τh · ωRO. (1.34)

The values of Re(λ) and Im(λ) are plotted in Figure 1.11a,b. It is striking that for
constant and small ae, the real part of λ first increases with ah before it starts
to decrease again. Thus, there is an optimal value for the carrier lifetimes if
large damping is required. The parameter space for the carrier lifetimes explored
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in Figure 1.11 can be separated into three different areas. The ‘‘overdamped
case’’ without ROs in the turn-on dynamics if both a parameters are large (small
lifetimes); ‘‘Case S’’ having equal lifetimes for both species and ‘‘Case D’’ showing
large timescale separation and, therefore, one large and one small parameter of ae

and ah.
For the QD laser modeled in Section 1.4, the microscopic calculations yield fast

hole scattering rates with lifetimes that are in the range of picoseconds. This leads
to high values of ah (ah > 5), while the slower electrons with their small scattering
rates are characterized by ae ≈ 0. Consequently, following the analytic approach for
‘‘case D,’’ the RO frequency and damping rate could be obtained, which are given
by Lüdge et al. [40]

ωDa
RO = 2π f Da

RO =
√

An∗
phW2κ , (1.35)

=
√


WANQD

Nsum
JGth

(
J

JGth
− 1

)
(1.36)


Da
RO = κAn∗

phWτh + 1
2τe

+ W

2
(An∗

ph + n∗
h

NQD
) (1.37)

≈ 1

2
(ωDa

RO)2 (
(2κ)−1 + τh

) + 1

2τe
(1.38)

where the superscript Da means case D with ah large. The analytic solutions
shown in Eqs. (1.35) and (1.37) for frequency and damping of the ROs have been
compared to numerically obtained data in Figure 1.12b,c. Note the good agreement
between the numeric values (symbols) and the analytic expressions (lines). The
numeric values for ωRO and 
RO have been obtained by fitting the function
nph(t) � C sin(ωROt + φ) exp(−
ROt) to the turn-on transients. Equation (1.37) for
the damping rate can be further simplified by omitting the smallest term (the one
containing n∗

h), leading to Eq. (1.38). This reveals that the K-factor (ratio between
damping rate and frequency squared [41, 42]) depends on three contributions.
The smallest results from the scattering processes of the fast species (τh), the
intermediate contribution is proportional to the cavity lifetime ((2κ)−1), while
the dominating effect scales with the scattering rates of the slow species. The
RO frequency instead does not explicitly depend on the scattering rates, but is
determined by JGth and the differential gain 
WA (Eq. (1.36) obtained by inserting
the steady-state relation n∗

ph from Eq. (1.20)).
A different scaling is found for ‘‘case S’’ (see [40]) with small scattering rates

for both carrier types (this can be achieved by changing the band structure and
increasing the hole confinement energy).

ωS
RO =

√
2An∗

phW2κ (1.39)


S
RO = W

2
[2An∗

ph + 1] + κ


ANQD + 1

4τe
+ 1

4τh
(1.40)

≈ 1

2
(ωS

RO)2(2κ)−1 + 1

4τe
+ 1

4τh
. (1.41)
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Figure 1.12 (a) Turn-on dynamics of the
QD laser for ‘‘case S’’ (similar lifetimes)
(gray solid) and ‘‘case D’’ (different life-
times) (black dashed) at J = 3.7 Jth. (b) and
(c) show comparisons between numerically
fitted data (symbols) and analytical data

obtained from Eqs. (1.35)–(1.40) (lines)
for the RO frequency and RO damping
rate, respectively. (nph(t) � C sin(ωROt +
φ) exp(−
ROt) is used to extract ωRO and

RO from the numerical simulation of
nph(t)).

For this ‘‘case S,’’ the expression of the RO frequency in Eq. (1.39) is the same as
the one for the conventional semiconductor laser [39]. However, the expression of
the damping rate is different. It contains the familiar term W

2

[
2An∗

ph+1
]

that is
found for the damping rate of QW lasers [19], but as already known from ‘‘case D’’
the dominating contribution stems from the scattering rates between QD and the
reservoir.

By changing the confinement energy in the numeric calculations of the scattering
rates it is possible to obtain small scattering rates and thus a ‘‘case S’’ like behaviour
of the QD laser. The results of this simulation are plotted in Figure 1.12a showing
weakly damped ROs. The analytic expressions accurately predict this behavior (see
lines in Figure 1.12b,c), which makes them a powerful analytical tool for designing
QD laser devices with optimal operation conditions.

1.5.1
Consequences of Optimizing Device Performance

The analytical expressions for the RO frequency and RO damping rate for the
different parameter ranges show that the RO frequency ωRO does not explicitly
depend on the carrier–carrier scattering between QW and QD. It strongly depends
on the cavity lifetime (2κ)−1 and radiative recombination lifetime W−1 and on the
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threshold current of the QD laser, which are determined by the gain, the ratio
between in- and out-scattering rates, and the losses in the QW.

The damping rate 
RO, instead, is crucially affected by the carrier–carrier scat-
tering rates. For equal lifetimes of electrons and holes, the damping increases
with decreasing lifetimes τe and τh. If both carrier types have different lifetimes,
only the slowest species (for the chosen QD–QW system, these are the elec-
trons) determines the damping rate, whereas the effect of the fast species is
negligible.

In the next section, numeric simulations of QD lasers with doped carrier
reservoir are discussed. Owing to the density-dependent Coulomb scattering rates,
the doping modifies the carrier lifetimes in a controlled way and thus it is a good
tool on the one hand for testing the analytics and on the other hand to optimize the
device performance.

1.6
QD Laser with Doped Carrier Reservoir

A doped QW can be implemented by choosing different initial conditions for
electron and hole densities in the QW. Without doping, the following initial
conditions have been used, that is, n0

e = 0, n0
h = 0, w0

e = 10−2DekT , and w0
h =

10−2DekT . Note that charge conservation is contained in the five-variable rate
equation system Eqs. (1.28)–(1.32), thus leading to only four independent dynamic
variables that are related by

Nsum(ṅe − ṅh) − NQD(ẇh − ẇe) = 0 (1.42)

which can be integrated giving

Nsum(ne − nh) − NQD(wh − we) = NQD(w0
e − w0

h). (1.43)

By increasing w0
e or w0

h and keeping the other at the small value of 10−2DekT ,
it is possible to model n- or p-doping, respectively. Because the rate equation
system treats 2D densities, the doping concentrations n ≈ w0

e and p ≈ w0
h are also

given per area. To compare this to 3D doping densities, the areal densities have
to be divided by the QW height, which is h = 4 nm. Thus, n = 2 × 1011cm−2

corresponds to n3D = 5 × 1017cm−3. Figure 1.13c,d shows that changes in initial
conditions drastically modify the QD laser turn-on dynamics. For n-doping, the
damping of the ROs is increased, whereas the damping is drastically reduced
if p-doping is introduced. This behavior can be understood by discussing the
steady-state values for the QW carrier densities wb.

N-doping increases the QW electron density, which then leads to higher
in-scattering rates Sin

e (Figure 1.3) and, therefore, to higher carrier densities n∗
e . On

the contrary, p-doping leads to a higher QW hole concentration and thus to higher
occupation of the QD hole levels. Note, however, that the increased QW hole density
for p-doped samples also has an effect on the out-scattering rate, as this contains
a factor that exponentially decreases with we through the detailed balance relation
(Eq. (1.13)). The scattering time τh for holes decreases with increasing p-doping,
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correspond to doping of 0.1, 0.2, and 0.4
times the degeneracy concentration De/hkT,
respectively. (DekT = 4.7 × 1011 cm−2 and
DhkT = 48 × 1011 cm−2). Parameters as in
Table 1.1; pump current is J = 2.5 Jth.

while the scattering time for electrons increases as plotted in Figure 1.13b. The
ratio between the timescales of both carriers decreases from τh/τe = 5/100 for the
undoped case to a value of τh/τe = 3/500 for a p-doping of p = 20 × 1011 cm−2.
Using the analytic expression Eq. (1.37) for the damping rate explains that the
lower damping results from the longer lifetime of the small species, whereas the
changes in the hole lifetime only marginally affect the damping rate.

Figure 1.14a shows the steady-state characteristics of the QD laser projected onto
the (nh, ne)-phase space for two different n-doping densities (squares and triangles)
and two different p-doping densities (open circles and stars). Figure 1.14b,c
shows close-ups for very high p-doping. Going from high p-doping to n-doping,
the steady states n∗

e and n∗
h move up along an approximately straight line in

(nh, ne)-phase space that is given by Eq. (1.23), while the turn-on dynamics becomes
more strongly damped and synchronized between electrons and holes. This is
different from changing the steady-state values by varying the confinement energy
as the increased steady-state values n∗

e (induced by increasing �Ee) lead to a
desynchronization (separation of timescales) of electrons and holes.

Comparison with Analytic Results

The analytical approximations of Section 1.5 and the obtained predictions about
changes in the laser turn-on dynamics are in good agreement with the numerical
simulations of a laser with different doping densities discussed in the last section.
The increasing n-doping concentration in a QD laser with timescale separation of
the carriers (‘‘case D’’ in Section 1.5) leads to a decrease in the electron lifetime,
which was at the same time accompanied by an increased damping. With the
analytic formula given in Eq. (1.37), the increased damping can be explained with
the decreased lifetime (Sin

e + Sout
e = τ−1

e increases). On the other hand, p-doping
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and p = 20 × 1011 cm−2, respectively. Param-
eters as in Table 1.1. (Reprinted from [8].)

of the same device did not yield a higher RO damping. The reason for this
counterintuitive result is the separation of timescales of electron and hole lifetimes
(which is the case for material with large differences in the effective masses of
electrons and holes). The slowest species determines the dynamics and, thus,
manipulating its lifetime has a drastic effect on the laser dynamics (Eq. (1.37)).
Instead, manipulating the lifetime of the fast species has only a minor effect.
The reduced damping for p-doping concentration is based on a reduction of the
electron lifetimes, which has its physical origin in the increased rate for mixed
electron–hole Coulomb scattering processes because of the excess holes in the
reservoir. It confirms that p-doping is beneficial for the modulation response of QD
lasers [43]. If a high RO damping rate is a desired property of QD lasers, n-doping
should be helpful.

1.7
Model Reduction

One way to simplify the discussed QD laser model is to neglect the density
dependence of the scattering rates and to use constant carrier lifetimes; see, for
example, [27, 33, 35]. If these lifetimes are chosen properly, they can lead to decent
results at a certain point of operation. Nevertheless, the uncertainty in the choice
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of proper simulation parameters, which is necessary for those models, will lead to
a large uncertainty regarding the results. Moreover, effects such as doping or the
effect of changing the QD size cannot be studied. There are also approaches that
take into account a phenomenological density dependence of the carrier lifetimes;
see, for example, [44], but again the problem of choosing the correct parameters
remains.

A simpler three-variable rate equation model was formulated by O’Brien et al. [45]
and is widely used for QD laser modeling (see [46] for detailed analytic discussions
of this model). This model does not distinguish between electrons and holes; it
assumes the same dynamics for both species, and it uses in-scattering rates into the
QDs that linearly increase with the reservoir carrier density, while the out-scattering
rates are constant. Following the analytic results of Section 1.5, a reduction in the
full microscopic five-variable model to a model that only assumes one carrier type
is possible, but two cases have to be distinguished. If electrons and holes relax on
a similar timescale (‘‘case S’’), the mean value of electron and hole rates needs to
be included; however, for timescale separation between the lifetimes of the species
(‘‘case D’’), the scattering rate of the slow species will be the important one that
determines the dynamics. If this is kept in mind, the (linearly fitted) microscopic
in-scattering rates can be used as input parameters for the three-variable rate
equation system. Nevertheless, it has to be noted that these parameters need to be
adjusted if large variations of the pump current or different doping densities are
modeled.

1.8
Comparison to Quantum Well Lasers

If a QD laser model is compared to a QW laser model [47, 48], one striking
difference is that the current is not injected directly into the active region, and
an additional reservoir has to be included. The relatively slow scattering processes
from the carrier reservoir into the QD levels are responsible for the high damping
of the turn-on process (Section 1.5) and thus also for the flat modulation response
curve of QD lasers if compared to the pronounced peak found for QW lasers. In the
limit of large and equal scattering rates for electrons and holes, the QD laser model
can be reduced to a QW laser model as shown in [46]. However, the modulation
bandwidth (and the cutoff frequency) of QD lasers is also much smaller because
of the smaller RO frequency. The reason for this lies in the fact that the threshold
currents needed to invert the localized two-level system is much smaller than the
current needed to invert a 2D electron gas.

If complex integrated structures, for example, QD lasers subjected to optical
feedback [18, 49] or lasers with saturable absorber are discussed (see Chapter 7 [50]
and Chapter 8 [51]), the high damping of the turn-on dynamics of the QD laser is one
crucial parameter when discussing differences with respect to QW lasers. Another
parameter that differs between QD and QW laser devices is the phase–amplitude
coupling (linewidth enhancement factor). It comes into play as soon as the phase
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of the electric field is important, for example, when modeling feedback problems
(see Chapter 6 [19]). For a discrete two-level system, the α-factor is zero because
of the symmetric gain spectrum. For an inhomogeneously broadened ensemble
of QDs inside the QD laser, α still remains small [52] and leads, for example,
to a smaller chirp and higher feedback sensitivity of QD lasers (see [18] for a
comparison of both laser models with feedback).

1.9
Summary

This chapter reviewed a microscopic rate equation approach that can be used
to model the dynamic response of electrically pumped edge emitting QD lasers.
Different levels of complexity have been explored. A detailed discussion of the
Coulomb scattering rates between localized QD levels and the 2D carrier reservoir
in the surrounding QW has underlined the importance of these nonlinear Auger
rates for a quantitative modeling of the QD laser device. Two-state lasing properties
as well as the effect of additional confined levels on the GS lasing properties have
been analyzed. It was shown that temperature, band structure, as well as doping
of the carrier reservoir can significantly alter the laser dynamics. Nevertheless, all
of these effects can be traced back to the values of the carrier–carrier scattering
rates and their nonlinear dependence on the carrier densities in the reservoir.
Furthermore, asymptotic analysis has allowed analytic insights into the relations
between frequency and damping of the turn-on dynamics and the carrier lifetimes
that finally permitted to predict the dynamics of the laser without tedious numeric
simulations, and provide insight into the governing physical mechanism.
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5. Malić, E., Bormann, M.J.P., Hövel, P.,
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Knorr, A., and Schöll, E. (2008) Turn-on
dynamics and modulation response in
semiconductor quantum dot lasers.
Phys. Rev. B, 78 (3), 035316. DOI:
10.1103/physrevb.78.035316.
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Exploiting Noise and Polarization Bistability in Vertical-Cavity
Surface-Emitting Lasers for Fast Pulse Generation and Logic
Operations
Jordi Zamora-Munt and Cristina Masoller

2.1
Introduction

Nonlinear systems and noise are ubiquitous in nature, and their interplay can
result in some unexpected behaviors, which can be very different from those
of linear systems. Noise is usually considered a drawback, degrading a system’s
performance, and a lot of efforts have been devoted to minimize its effect. However,
in recent years, a better understanding of the role of noise in nonlinear systems
has resulted in the development of novel methods for taking advantage and
exploiting noise for controlling these systems. Relevant examples can be found in
the work of Prof. Schöll and coworkers [1, 2], who have shown that the regularity
of noise-induced motion can be controlled by exploiting the interplay of noise and
time-delayed feedback. In coupled stochastic excitable systems, such as neurons,
Prof. Schöll and coworkers have also shown that delayed feedback can be employed
to control the system’s coherence, either to enhance or to decrease synchronization
[3–7].

An alternative way to control a stochastic nonlinear system is by modulation
of a system’s parameter. Here we consider an optical system, specifically, a
vertical-cavity surface-emitting laser (VCSEL), and study numerically the influence
of modulating the laser current parameter.

A VCSEL is a type of semiconductor laser that has several advantages over
conventional, edge-emitting semiconductor lasers (compactness, low cost, fast
response, etc.) and is nowadays widely used in photonics, nanotechnology, optical
signal processing, and optical networks [8]. As is discussed also by Sciamanna
(Chapter 3) and by Shore (Chapter 15), VCSELs often display a complex polarization
nonlinear dynamics that, driven solely by noise (due to, e.g., spontaneous emission),
can significantly degrade the laser performance. However, by controlling a laser
parameter or by fine tuning the strength of an external noisy signal (e.g., via weak
incoherent optical injection), the so-called laser consistency or reliability, that is, the
ability to encode irregular signals in the laser output in a reproducible manner, can
be enhanced, which can in turn lead to stochastic synchronization as discussed by
Wieczorek in Chapter 11. These effects, combined with polarization competition,

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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can be exploited for novel applications, such as noise-assisted binary information
transmission [9, 10].

A relevant feature of VCSELs is related to the stability of two orthogonal linear
polarizations. In VCSELs, polarization bistability and competition often arise
because of the laser circular transverse geometry (a schematic representation of
the VCSEL geometry is presented in Figure 2.1a). Owing to anisotropies that break
the circular symmetry, the output of a VCSEL is linearly polarized along one of two
orthogonal directions, referred to as x and y. When the VCSEL begins to lase one
linear polarization dominates, and, in many devices, when the injection current
is increased above a certain value, it is observed that the emission switches to the
orthogonal linear polarization. The polarization switching (PS) usually involves
hysteresis, as when the current decreases, the switch back occurs at a lower
current value (Figure 2.1b). Stochastic polarization switching (Figure 2.1c) can also
occur and has been interpreted in terms of Kramers’ hopping in an effective 1D
double-well potential [13, 14].

In this chapter, we focus on the interplay of noise, current modulation, and
nonlinear dynamics in VCSELs. In the first part of the chapter, we consider
a triangular asymmetric current modulation; in the second part, a three-level
aperiodic current modulation.

In the first part of this chapter, we review the results presented in [16], where
we proposed a way to exploit noise to generate fast optical pulses with a trian-
gular modulating signal that is, on average, below the static threshold (i.e., the
threshold for cw operation). Our work was motivated by the experimental and
theoretical results of Glorieux and coworkers [15], which employed a Nd 3+:YVO4
diode-pumped laser, and an asymmetric triangular modulation was applied to the
power delivered by the pumping diode laser. They showed that a signal with a
slow-rising ramp lead to the emission of pulses, even when the laser was oper-
ated, on average, below the threshold. The emitted pulses were larger than those
emitted when the modulation was a symmetric triangular signal with the same
averaged value, see Figure 2.2a,b. In contrast, a signal with a fast-rising ramp and
the same averaged value did not lead to pulse emission, and the laser intensity
remained at the noise level during all the modulation cycle (Figure 2.2c). In [15],
the modulation period was of the order of tens of microseconds, while in [16],
we showed that a similar effect could be observed in VCSELs but with much
faster modulating signals (of the order of nanoseconds). In the first part of this
chapter, we review our previous work and discuss the role of spontaneous emission
noise.

In the second part of this chapter, we review the results presented in [17],
were we analyzed the response of a polarization-bistable VCSEL to a three-level
aperiodic current modulation and showed that it can display the phenomenon of
Logic Stochastic Resonance (LSR). The concept of LSR was first introduced by
Murali et al. [18], who demonstrated that a two-state system with two adjustable
thresholds, modeled by a one-dimensional double-well potential, can act as a
reliable and flexible logic gate in the presence of an appropriate amount of noise,
as shown in Figure 2.3. Since the pioneer work of Murali et al. [18], the LSR
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phenomenon has been numerically and experimentally demonstrated in various
nonlinear systems such as electronic circuits, tunneling diodes, and chemical
systems [19–25].

In [17], we showed that LSR can also occur in VCSELs, which, under appropriated
conditions, can give a reliable logic response to two logic inputs, even in the presence
of a significant amount of noise. The two logic inputs are encoded in a three-level
aperiodic signal directly applied to the laser bias current. Exploiting polarization
bistability, one can consider that the laser response is a logic 1 if one linear
polarization is emitted (e.g., x) and a logic 0 if the orthogonal one is emitted
(e.g., y). Then, the truth table of the fundamental logical operators AND and OR
(and their negations, NAND and NOR) can be reproduced with a probability of a
correct response equal to one in a wide range of noise strengths.

The rest of this chapter is organized as follows. In Section 2.2, we present
the VCSEL spin-flip model (SFM) used to study both asymmetric triangular
current modulation and aperiodic three-level current modulation. In Section 2.3,
we discuss the phenomenon of polarization-switching within the framework of
the SFM model. In Section 2.4, we demonstrate the generation of fast pulses via
asymmetric current modulation, and in Section 2.5, we discuss the influence of
spontaneous emission noise. In Section 2.6, we demonstrate numerically that a
VCSEL can respond to a three-level aperiodic current modulation as an stochastic
logic gate, and in Section 2.7, we analyze the reliability of the VCSEL-based logic
gate. Finally, in Section 2.8, we summarize our conclusions.
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2.2
Spin-Flip Model

The dynamics of a VCSEL can be described by the following set of rate equations
for the orthogonal linearly polarized slowly varying complex amplitudes, Ex and Ey,
the total carrier density, N = N+ + N−, and the carrier difference, n = N+ − N−
(N+ and N− being carrier populations with opposite spin) [26, 27]:

dEx

dt
= κ(1 + iα)

[
(N − 1)Ex + inEy

] + (γa + iγp)Ex + √
βspγNξx , (2.1)
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dEy

dt
= κ(1 + iα)

[
(N − 1)Ey − inEx

] − (γa + iγp)Ey + √
βspγNξy, (2.2)

dN

dt
= γN

[
J(t) − N(1 + |Ex|2 + |Ey|2) − in

(
EyE∗

x − ExE∗
y

)]
, (2.3)

dn

dt
= −γsn − γN

[
n(|Ex|2 + |Ey|2) + iN

(
EyE∗

x − ExE∗
y

)]
(2.4)

where κ is the field decay rate, γN is the decay rate of the total carrier population,
γs is the spin-flip rate, α is the linewidth enhancement factor, γa and γp are
linear anisotropies representing dichroism and birefringence, and J(t) is the
time-dependent injection current parameter normalized such that the static, cw
threshold in the absence of anisotropies is at Jth, s = 1. Spontaneous emission
noise is represented by the terms ξx and ξy, which are uncorrelated Gaussian white
noises with zero mean and unit variance. In the following, the noise strength is
defined as D = βspγN , where βsp is the coefficient of spontaneous emission.

The model has two linearly polarized steady-state solutions given by

Ex = Exeiωxt, Ey = 0, N = Nx , n = 0, (2.5)

Ex = 0, Ey = Eye
iωyt, N = Ny, n = 0 (2.6)

where ωx = αγa − γp, ωy = −αγa + γp, Nx = 1 + γa/κ , Ny = 1 − γa/κ , Ex =√
J/Nx − 1, and Ey =

√
J/Ny − 1.

The stability of these linearly polarized steady-state solutions (referred to as x and
y modes) depends on the various model parameters. There are parameter regions
where there is monostability (where either the x mode or the y mode is stable)
and parameter regions where there is bistability (where both x and y modes are
stable); see Figure 2.4a, which shows the linear stability of the two polarizations.
There are also parameter regions where neither the x mode nor the y mode are
stable. Steady-state solutions representing elliptically polarized light (where Ex and
Ey have same optical frequency) also exist, as discussed in [27].

Unless otherwise specifically stated, in the rest of this chapter, Eqs. (2.1)–(2.4)
are simulated with the following parameters: κ = 300 ns−1, α = 3, γN = 1 ns−1,
γa = 0.5 ns−1, γp = 50 rad/ns, γs = 50 ns−1, and D = 10−6 ns−1, which are typical
for VCSELs.

2.3
Polarization Switching

Within the framework of the SFM, the PS phenomenon induced by the variation
of a parameter (typically, the injection current) is interpreted as due to a change of
stability of the two linearly polarized steady-state solutions, which can result in a
switch from one polarization to the orthogonal one. This is shown in Figure 2.4b,
which displays the polarization-resolved intensity–current characteristic for in-
creasing and for decreasing pump current, calculated numerically by integrating



2.3 Polarization Switching 41

0

0.1

0.2

0.3

1 1.1 1.2 1.3

|E
|2  

(a
.u

.)

J (a.u.)J (a.u.) (c)

1

I
II

III

IV

1.1

(b)

0.1

0.2

0.3

|E
|2  

(a
.u

.)

0
1.2 1.3

(a) Birefringency parameter, gp (rad GHz)

In
je

ct
io

n 
cu

rr
en

t p
ar

am
et

er
, J

 (
a.

u.
)

0 20 40 60 80 100

1.05

1.1

1.15

1.2

1.25

1.3

Y

X

X & Y

Figure 2.4 (a) Stability of the x and y po-
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gence, injection current). Other model pa-
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Intensities of the x and y polarizations when
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(see Section 2.6 for details). The dash verti-
cal line in the left panel indicates the scan
in the right panel. (c) As panel (b), but the
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the model equations with a slow, quasi-adiabatic variation of the injection current
(J varies between Ji = 0.95 and Jf = 1.4, upwards and downwards, in 40 μs).

It can be noticed that the stability scenario presented in Figure 2.4b and the PS
points for increasing and decreasing current agree very well with the predictions
of the linear stability analysis, displayed in Figure 2.4a.

Near the PS points, noise-induced switching can also occur. It has been shown
that, in spite of the potentially complicated polarization dynamics, key features of
the PS (such as the distribution of residence times in each polarization state) can be
well understood as stochastic hopping in an effective one-dimensional double-well
potential [13, 14].
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The effective potential associated with the PS scenario is also displayed schemat-
ically in Figure 2.4b. In the low current region, labeled I, the laser can emit only the
y polarization, which is represented as an effective potential with only one well. For
increasing pump, there is a region of pump current values, labeled II, where there
is bistability and a small probability of emission of the x polarization. The effective
potential is a double-well potential, with a small right well. In this region of pump
current values, if the laser emits the x polarization, a weak perturbation or a small
amount of noise has a large probability to trigger a PS to the y polarization. On the
contrary, if the laser emits the y polarization, there is only a small probability that
a fluctuation will trigger a PS. As the pump increases, the switching probabilities
vary, and at the right boundary of the bistable region, label III, the most probable
polarization is the x polarization. If the laser emits the y polarization, a weak
perturbation or a small amount of noise can trigger a switch to the x polarization.
In this region, the effective potential is the double-well potential, which has a small
left well. Finally, for high pump current (region label IV), the laser emits the x
polarization and the effective potential has only one well.

However, this stability scenario changes drastically when the injection current
variation is not slow or quasi-adiabatic, as compared to the laser characteristic time
scales.

In nonlinear systems, when a control parameter is varied in time and is swept
across a bifurcation point, the phenomenon of critical slowing down occurs near
the bifurcation point and results in dynamical hysteresis [28]. In semiconductor
lasers, critical slowing down has been demonstrated experimentally near the laser
threshold and produces a delay in the laser turn-on, as shown in Figure 2.5, which
depends on the pump current sweep rate and on the noise strength, among other
parameters [28, 29].

The phenomena of critical slowing down and dynamical hysteresis near the PS
points can be investigated numerically by simulating the SFM rate equations [30].
Figure 2.4c shows the polarization intensities versus the pump current, when the
current varies between Ji = 0.95 and Jf = 1.4 in 25 ns (note that in Figure 2.4b, the
current varied between the same extreme values but in 40 μs). By comparing both
figures, one can observe that, with a faster current modulation:

(i) The threshold is delayed to a higher current value, that is, the dynamic
lasing threshold is larger than the static one, Js,th = 1 in the absence of
anisotropies.

(ii) The laser turns on with relaxation oscillations.
(iii) The PS for increasing current is also delayed to a higher current value.
(iv) The PS for decreasing current is also delayed to a lower current value and can

even disappear (in Figure 2.4c, one can notice that the x polarization remains
on until the laser turns off).

(v) As a consequence of (iii) and (iv), the size of the bistability region increases,
as compared to that predicted by both the linear stability analysis and the
simulations with quasi-static current variation.
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agonal branch: the lower occurs for in-
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creasing pump because of the speed at
which the laser is driven. Adapted from
[29].

To summarize, the quasi-static intensity-current response, as that shown in

Figure 2.4a, is a good representation of the polarization response of a VCSEL when

the injection current variation is slower than the longest time scale of the laser but

fails to describe the laser polarization with faster modulation.

The above described phenomenon, due to critical slowing down near the PS

points, has been demonstrated experimentally in directly modulated VCSELs (see

Figure 2.6, adapted from [31]).
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2.4
Pulse Generation Via Asymmetric Triangular Current Modulation

As discussed in the previous section, when the injection current variation is not
quasi-static, the laser turns on with a few relaxation oscillations at the dynamic lasing
threshold. As the current sweep becomes faster, the amplitude of those oscillations
grows and, eventually, the intensity falls to 0 before the second oscillation occurs.
If we now repeat periodically the linear increase and decrease of the pump current
parameter with a period short enough, only one pulse per cycle is emitted per
modulation cycle, as shown in Figure 2.7.

Therefore, a fast enough triangular current modulation (symmetric or not
symmetric) crossing the static cw threshold, Js,th, can result in the emission of
short pulses of both orthogonal polarizations even when the average current value
is below Js,th. Because of the presence of noise, which is crucial at threshold, these
pulses are irregular, both in amplitude and in timing.
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Figure 2.7 (a) Time traces of the intensi-
ties of the orthogonal linear polarizations
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Jm = 0.87 < 1), and the modulation period is
T = 3 ns. Panel (d) displays a detail of panel
(a), and panel (e) displays the same detail
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The characteristics of these pulses depend on the shape of the triangular signal
modulating the current, J(t), which is defined in terms of four parameters:

• the lowest current value, J0,
• the modulation amplitude, �J,
• the modulation period, T = T1 + T2, where T1 and T2 are the time intervals

during which the current increases or decreases linearly, and
• the asymmetry parameter, which is the ratio between the rising time and the

modulation period, αa = T1/T .

With these definitions, the mean value of the pump current is Jm = J0 + �J/2.
In Figure 2.7, three different shapes of asymmetric current modulation, with the

same period and amplitude, are shown (dashed lines): slow rising and fast decreas-
ing (αa = 80%), almost symmetric (αa = 60%), fast rising and slow decreasing
(αa = 20%).

The amplitude and the modulation period are chosen such that the laser emits
only one sharp pulse per modulation cycle that is triggered at the end of the cycle,
and the emission starts when J(t) is still above Js,th as can be seen in Figure 2.7e.
This is in good agreement with the observations of [15] and can be interpreted as
due to the nonlinear interplay of the photons and the carriers in the VCSEL active
region as is discussed later.
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In Figure 2.7a–c, the solid lines show the time traces of the intensities of the
two linear polarizations, |Ex|2 and |Ey|2. For αa = 80%, large pulses are emitted
(Figure 2.7a). A detail of a pulse in Figure 2.7a is shown in Figure 2.7d. For
decreasing αa, that is, going to a more symmetric modulation, the pulse amplitude
gradually decreases (see Figure 2.7b, where αa = 60%). If we continue decreasing αa

(considering the opposite asymmetry shape, with a fast-rising and slow-decreasing
ramp), the pulses become smaller, and eventually, there are no pulses, as the
intensities of the two polarizations remain at the noise level (see Figure 2.7c, where
αa = 20%).

Therefore, when the current modulation is asymmetric, there is a clear difference
between the two asymmetry shapes: a slow-rising ramp followed by a fast-decreasing
one and the opposite situation, a fast-rising ramp followed by a slow-decreasing one.

The effect of the asymmetry of the current modulation on the characteristics of the
intensity pulses is presented in Figure 2.8. Figure 2.8a displays the time-averaged
intensities of the two polarizations, 〈|Ex|2〉 and 〈|Ey|2〉, and the time-averaged
total intensity, 〈|ET |2〉 = 〈|Ex|2 + |Ey|2〉, versus the asymmetry parameter, αa. In
Figure 2.8b, we display the time-averaged pulse amplitude given by the maximum
intensity in a cycle, 〈Ax〉, 〈Ay〉, and 〈AT 〉. When there is more than one pulse
per modulation cycle, we calculate the average amplitude of the largest pulse. The
averaged amplitudes are one order of magnitude larger than the averaged intensities
because the laser emits sharp pulses and is off during most of the modulation cycle.
Figure 2.8c displays the dispersion of the amplitude of the pulses, characterized in
terms of the standard deviation normalized to the mean amplitude. In the three
measures, there is an optimal modulation asymmetry, αa

∼= 80%, for which the
averaged intensity and averaged pulse amplitude reach their maximum value, and
for this asymmetry, the dispersion of the pulse amplitude is minimum.

The emitted pulses strongly depend on the initial conditions of the cycle, which
are given by the dominance of one of the following mechanisms: the spontaneous
emission and the radiation left by the previous pulse. When the radiation left by
the previous pulse is absorbed by the carriers during the fall part of the cycle,
spontaneous emission is the dominant mechanism for triggering the next pulse
in the next cycle. On the contrary, when the radiation left has not been completely
absorbed, it dominates over spontaneous emission for triggering the next pulse. We
interpret our results as in [15], where the authors found that for small asymmetries
the spontaneous emission is the dominant mechanism, whereas large asymmetries
dominate the radiation left by the previous pulse.

The averaged total amplitude of the pulses is shown in Figure 2.8d as a function
of the asymmetry parameter, αa, and the mean value of the modulation, Jm, for a
fixed modulation amplitude, �J = 1 (�J is the same as in Figure 2.88a–c; thus,
Figure 2.8b is a horizontal scan of Figure 2.8d). We have used Jm instead of
J0 to emphasize that the laser emission occurs with a pump current that is on
average below Js,th = 1. As the pump current is modulated, it is suitable to define
an effective lasing threshold as the averaged pump current above which the laser
turns on. The modulation reduces the effective threshold, which depends on the
asymmetry, giving the largest threshold reduction and the maximum amplitude for
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Figure 2.8 (a) Time-averaged intensities,
(b) pulse amplitudes, and (c) normalized
standard deviation of the pulse amplitude
as a function of the asymmetry parameter,
αa. In (a–c) x polarization (�), y polariza-
tion (©), and total intensity (�). (d) plot of

the average pulse total amplitude 〈AT 〉 in the
parameter plane for the asymmetry parame-
ter, αa, and the mean pump current, Jm. The
modulation amplitude is �J = 1 and the pe-
riod is T = 3 ns. J0 is fixed in figures (a–c),
J0 = 0.37, and is varied in figure (d).

an optimal αa ∼ 80%. For increasing Jm, the maximum amplitude moves to lower
asymmetries, for which it has a fast-rising ramp followed by a slow-decreasing one.

The effective threshold can be reduced about 20% for large enough modulation
amplitude, �J, and small enough J0. The modulation also enhances the emission
of both orthogonal polarizations in a large range of pump currents, which can be
understood as an effective stabilization of both polarizations. A discussion on the
influence of the modulation parameters can be found in [16].
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2.5
Influence of the Noise Strength

Noise plays a key role in the emission of the pulses and the interplay between
the pump current modulation, and the noise is expected to produce constructive
effects, enhancing the input signal.

In Figure 2.9a–c, we show the time traces of the intensities of the polarizations
for a fixed modulation asymmetry, αa = 80%, and three different noise strengths,
D. Large spontaneous emission triggers the pulses at the end of the rising ramp
(Figure 2.9a). An optimal noise strength D ∼ 10−3 ns−1 produces pulses with the
largest amplitude triggered at the very beginning of the falling ramp (Figure 2.9b).
For lower D values, the pulses are emitted at the end of the falling ramp, and their
amplitude gradually decreases to zero (Figure 2.9c).

In Figure 2.9d–f, we show the time-averaged intensities, pulse amplitudes,
and dispersion of the pulse amplitudes, respectively, as a function of the noise
strength, D. While the intensity grows monotonously with the noise strength until
it saturates, the amplitude of the pulses shows a maximum at D ∼ 10−3 ns−1,
which is accompanied by the minimum dispersion. This optimal emission for
a finite noise strength is a hallmark of stochastic resonance [32] in our system.
Here, the effect of the noise over the amplitude of the pulses is much clearer than
in the period of the pulses, which occurs almost synchronized with the current
modulation.
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Figure 2.9 Time traces of the intensities for
fixed asymmetry parameter αa = 80% and
three noise strengths (a) D = 10−1 ns−1,
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The appearance of a stochastic resonance highlights the interplay between
the pulse triggering mechanisms. As was previously discussed, the radiation left
by the previous pulse dominates for large αa. Thus, by increasing D, we are
enhancing the effect of the spontaneous emission in the triggering process. The
turn-on occurs earlier, in a pump current modulation cycle, since the noise makes
the system easier to reach the lasing state. On the other hand, the earlier the
pulse, the lower the radiation left to the next pulse. The maximum amplitude in
Figure 2.9e gives the optimal noise intensity for which the radiation left is not too
weak and the noise is not too strong.

2.6
Logic Stochastic Resonance in Polarization-Bistable VCSELs

Stochastic resonance phenomena in directly modulated semiconductor lasers have
been extensively investigated in the literature [33–37]. Recently, a new kind of
stochastic resonance has been demonstrated, named logical stochastic resonance
(LSR) [18], which uses the nonlinear response of a bistable system to reproduce
logical operations such as the AND and OR operations, under the influence of
the right amount of noise. The main idea behind LSR is that the input levels can
be chosen such that the probability of the switchings between two logical outputs
is controlled by the noise strength [18].

In this section, we discuss the implementation of a VCSEL-based stochastic
logical operator using an aperiodic three-level current modulation and the linearly
polarized light as the output signal [17]. The case of optical modulation is briefly
discussed.

We consider that the pump current parameter, J(t), is the sum of two aperiodic
square waves, J(t) = J1(t) + J2(t), which encode the two logic inputs. Since the logic
inputs can be either 0 or 1, we have four distinct input sets: (0, 0), (0, 1), (1, 0), and
(1, 1). Sets (0, 1) and (1, 0) give the same value of J, and thus, the four distinct logic
sets reduce to three J values.

Therefore, it is convenient to introduce the following three parameters charac-
terizing the three-level aperiodic current modulation:

• the mean value, Jm,
• the modulation amplitude, �J, and
• the bit time, T , which is the sum of the time interval during which the pump

current is constant, T1, and the time interval T2 during which there is a
fast-increasing or decreasing ramp to the next current value (T = T1 + T2 with
T1 	 T2).

Since the four distinct logic sets reduce to three J values, we will use the values
JII, JIII, and JIV that correspond to the regions indicated in Figure 2.9b. We avoid
using JI because it is close to the static threshold, and with fast modulation, the PS
for decreasing current does not occur, as was mentioned before. Then, Jm and �J
determine the three current levels as JII = Jm − �J, JIII = Jm, and JIV = Jm + �J.
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The laser response is determined by the polarization of the emitted light. We
chose parameters such that the laser emits either the x or the y polarization
(parameter regions where there is polarization coexistence or elliptically polarized
light are avoided). The laser response is considered a logical 1 if, for instance, the
x polarization is emitted, and a logical 0, if the y polarization is emitted. Which
polarization represents a logic 1, and which a logic 0 can depend on the logic
operation, as discussed later.

In this way, the polarization emitted at each of the three current levels, encoding
the four possible combinations of the two logic inputs, allows to implement the
operations OR, AND, NOR, and NAND, according to Table 2.1. One should notice
that by detecting one polarization, one obtains a logic response and the negation of
that logic response by detecting the orthogonal polarization. In the following, we
focus only on the nonnegation operations AND and OR.

Table 2.2 illustrates the encoding scheme. For the OR operation, x represents a
logical 1 and y represents a logical 0. If the laser is emitting the y polarization, the
current levels JIII and JIV [representing the inputs (0,1), (1,0), and (1,1)] will both
induce a switch to the x polarization. For the AND operation, the definition of the
laser logic response changes: it is a logic 0 if the x polarization is emitted and a
logic 1 if the y polarization is emitted. Also, the encoding criterion changes, in the
sense that the lower current level JII encodes the input (0, 0) for the OR operation,
whereas it encodes the input (1, 1) for the AND operation; the highest current level
JIV encodes the input (1, 1) for OR and encodes (0, 0) for AND; the middle level JIII

encodes (1,0) and (0, 1) for both operations.

Table 2.1 Relationship between the two inputs and the output
of the logic operations.

Logic inputs AND NAND OR NOR

(0,0) 0 1 0 1
(1,0)/(0,1) 0 1 1 0
(1,1) 1 0 1 0

Table 2.2 Encoding scheme: relationship between the logic
inputs, the encoding current levels, the output polarization,
and the logic output for the AND and OR operations.

Logic AND: OR:
inputs Current x/y Logic output Current x/y Logic output

(0,0) JIV x 0 JII y 0
(1,0)/(0,1) JIII x 0 JIII x 1
(1,1) JII y 1 JIV x 1
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There are other ways to associate the four possible logic inputs (0,0), (1,0), (0,1),
and (1,1) to three input levels. In the scheme in [18], the levels JI, JII, JIII lead to the
operation AND and the levels JII, JIII, JIV to the operation OR, in the presence of
the right amount of noise.

In the following, we focus on the OR operation implemented with the encoding
scheme described in Table 2.2, as the results apply also for the symmetric AND
operation, because both operations are implemented with the same three current
levels. This scheme allows fast modulation in AND and OR operations by preventing
the drawback that at level JI, the PS disappears for decreasing current, as discussed
previously.

Unless otherwise explicitly stated, we use the following parameters for the
three-level aperiodic signal: Jm = 1.3, �J = 0.27, and T = T1 + T2 = 31.5 ns, with
T1 = 31 ns, and T2 = 0.5 ns.

Figure 2.10a–c displays the laser response for the same logic input and three
values of the noise strength. The three current levels are such that the laser emits
one polarization (x) for two of them, while for the third one, it can switch to the
orthogonal polarization (y), in the presence of the right amount of noise. With weak
noise, the PS is delayed with respect to the current modulation (Figure 2.10a); with
too strong noise, both polarizations are emitted simultaneously within the same
bit (Figure 2.10c). Therefore, the operation of the VCSEL as a logic gate depends
on the noise strength, in good agreement with [18]. For an intermediate amount of
noise (Figure 2.10b), the PS occurs a short time after the beginning of a bit, whereas
the noise is not strong enough to stimulate the emission of large intensities on
both polarizations.
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2.7
Reliability of the VCSEL-Based Stochastic Logic Gate

To evaluate the reliability of the VCSEL-based stochastic logic gate, we calculate the
success probability, that is, the probability to obtain the desired logic output. For
the two logic inputs, we generate two random uncorrelated sequences of N ≥ 210

bits and compute the success probability, P, as the ratio of the number of correct
bits to the total number of bits. We define that a bit is correct, as follows. When x
is the ‘‘right’’ output polarization (according to Table 2.2), we count a bit as correct
if a given percentage (say, 80%) or more of the emitted power is emitted in the x
polarization; if x is the ‘‘wrong’’ polarization, we count a bit as correct if a given
percentage (say, 20%) or less of the emitted power is emitted in the x polarization.

Figure 2.11a displays the success probability as a function of the noise strength,
for three success criteria: 80–20%, 90–10%, and 70–30%. One can notice that
there is a range of noise strengths in which P = 1, and this noise range vanishes
(increases) when choosing a more restrictive (a more permissive) threshold for
the emitted power in the x polarization. Within this noise range, there is optimal
noise-activated PSs (the ‘‘interwell’’ dynamics in the double-well potential picture)
and optimal sensitivity to spontaneous emission in each polarization (the ‘‘in-
trawell’’ dynamics in the double-well potential picture). It should be noticed that
P = 1 occurs for noise strengths D that do not have to be unusually small. On the
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contrary, they are realistic values for semiconductor lasers, which typically have
D ∼ 10−4.

The success probability depends strongly on the bit time, T , and the noise
strength, D, as shown in Figure 2.11b. Short bits (≤5 ns) prevent logical operations
because of the finite time required for the PS. For increasing T , the success
probability grows until it saturates at P = 1 for long enough bits, for which the PS
time is �T . The interplay between the duration of the bit and the noise strength
can be interpreted as follows. The time needed to escape from a potential well
decreases with increasing noise [32]. Then, for weak noise, as D increases, the
escape time decreases and the probability of a correct response grows. On the other
hand, too strong noise results in spontaneous emission in both polarizations and
thus, for large enough noise, the power emitted in the ‘‘wrong’’ polarization grows
above the threshold for detecting the response as correct, and thus, above a certain
noise level, the success probability decreases monotonously. The dependence of the
success probability on the noise strength is due to the interplay of noise-induced
escapes (interwell stochastic dynamics) and spontaneous emission noise in the two
polarizations (intrawell stochastic dynamics).

The effect of LSR in VCSELs is reliable in a large range of laser parameters and
current modulations and is also robust under small feedback strengths [17], which
makes the VCSEL logic gate attractive for applications in systems subjected to
noisy backgrounds. Our proposed implementation does not require a fine tuning
of parameters, and there is a wide range of realistic noise strengths in which the
device gives a reliable and correct logic response.

A desired property of the optical logic circuits is that the light should be the input
and the output of the system. For that reason, an all-optical logical operator has
been considered for our system. A more complex scenario occurs when we use an
optical injection as the input modulation. A finite optical injection leads to the
bistability of both polarizations, which is required for LSR. However, a complicate
route to the PS occurs in the borders of the bistable region [38], and oscillatory or
even chaotic dynamics appear. The results obtained for this configuration reveal
that, despite the complex dynamics, results similar to those shown in Figure 2.11
can be obtained. A fast (on the order of tens of nanoseconds) and reliable all-optical
noise-induced logical operator is possible in VCSELs, but further investigation is
required on this topic.

2.8
Conclusions

We have shown that in VCSELs, the interplay of noise, current modulation, and
polarization bistability can result in two noise-controlled effects that have potential
applications in optical information processing systems. First, we considered a
triangular asymmetric current modulation and showed that, for appropriated
asymmetry parameters and noise strength, the laser emits large coherent intensity
pulses even when the cw value of the bias current is, on average, below the lasing
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threshold. Second, we have shown that, when the laser current is modulated with
a three-level aperiodic signal, in a wide range of noise strengths, the laser responds
as a reliable stochastic logic gate. Our results are promising because it has recently
been demonstrated experimentally that polarization of bistable VCSELs can be
used to build an optical buffer memory [39–41], in which the bit state of the optical
signal, ‘‘0’’ or ‘‘1’’, is stored as a lasing linear polarization state (x or y), and it can
be transferred from one VCSEL to another that is optically connected in cascade.
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3
Mode Competition Driving Laser Nonlinear Dynamics
Marc Sciamanna

3.1
Introduction

It is known that semiconductor lasers allow for the emission of several lasing
modes that compete for the optical gain: longitudinal modes with frequency spacing
related to the laser internal cavity length and dispersive properties, transverse modes
related to the optical cavity geometry, and polarization modes when the polarization
of the emitted light is not pinned by the cavity and gain properties. The coexistence of
several laser modes not only affects the laser performances (relative intensity noise,
laser linewidth, etc.) but also impacts on the laser dynamics when it is subject to, for
example, optical feedback, optical injection, or large current modulation. In such
configurations the laser relaxation oscillations (RO) can become undamped and the
laser starts behaving like an autonomous nonlinear oscillator. Additional bifurca-
tions – that is, qualitative changes in the dynamics – may occur and destabilize the
time-periodic dynamics into either quasiperiodicity or even chaos. When the laser
exhibits such a rich and complex set of dynamical behaviors, the multimode emis-
sion can lead either to an apparently more regular total laser output or, by contrast,
can lead to a more complex laser chaotic dynamics with a higher dimension.

In this chapter, we review recent results showing the influence of mode competi-
tion on semiconductor laser nonlinear dynamics. Examples are mostly taken from
the author’s own contributions. Focus is made on experiments with, whenever it is
possible, a comparison with theoretical modeling and simulations. The chapter is
organized as follows:

• In Section 3.2, we summarize those configurations where the laser dynamics
could be considered as resulting from mode competition and multimode lasing.
More specifically, we talk about longitudinal modes, transverse modes, polariza-
tion modes of vertical-cavity surface-emitting lasers (VCSELs), and external-cavity
modes (ECMs) in compound-cavity lasers.

• In Section 3.3, we review the properties of multimode semiconductor lasers in
the presence of a moderately strong optical feedback, such that the laser dynamics
is brought into optical chaos.
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• In Section 3.4, we show how the ECMs of a compound-cavity laser can beat and
this beating results in a high-frequency self-pulsating laser output.

• In Section 3.5, we focus on a dynamical regime that is specific to optical feedback
from short external cavities and called regular pulse package (RPP). We discuss
about the impact of polarization mode competition in VCSELs in this dynamical
regime, where the laser output fires a regular stream of pulses.

• In Section 3.6, we review the interesting polarization competition arising in
VCSEL, and in particular, the polarization dynamics accompanying polarization
switching (PS) induced by optical feedback: the optical feedback induces a
competition between two orthogonal linearly polarized (LP) laser modes, and
together with the induced switching the two laser modes exhibit a time-periodic
pulsing dynamics at the period of the time delay in the feedback loop. This
example shows the generic properties of two-mode systems with time delay and
noise, such as coherence resonance (CR).

• In Section 3.7, we show how the two-polarization-mode lasing of VCSEL in-
fluences the dynamics of a laser in the presence of optical injection. We also
highlight the interesting injection locking properties of the laser when it emits
several high-order transverse modes.

• Finally, in Section 3.8, we discuss recent results on a gain switching dynamics
that occurs in quantum dot (QD) semiconductor lasers with optical injection and
lasing in both excited and ground energy states.

3.2
Mode Competition in Semiconductor Lasers

There are several configurations where a semiconductor laser does not emit in a
single-frequency lasing mode, but instead shows competition and/or simultaneous
lasing in nondegenerate laser modes.

1) The laser threshold condition for a semiconductor optical gain medium in-
serted in a resonating optical cavity (typically a Fabry–Perot cavity obtained by
cleavage of the two mirror facets) is deduced from the fact that an optical wave
propagating through the laser cavity forms a standing wave between the two
mirror facets of the laser. The distance L between the two mirrors determines
the period of oscillation of this curve. This standing optical wave resonates only
when the cavity length L is an integer number m of half wavelengths existing
between the two mirrors. In other words, a node must exist at each end of the
cavity. The only way that this can take place is for L to be exactly a whole number
multiple of half wavelengths λ/2. This means that L = m(λ/2), where λ is the
wavelength of light in the semiconductor matter. As a result of this situation,
there can exist many longitudinal modes in the cavity of the laser diode, each
resonating at its distinct wavelength λm. Two adjacent longitudinal laser modes
are separated by a wavelength of �λ = λ2

0/2ngL with ng the so-called group re-
fractive index. The number of longitudinal modes that a semiconductor laser is
capable of supporting is a function of the cavity structure, and also because of the
gain spectrum: only modes whose optical gains compensate the corresponding
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optical losses reach the threshold condition for lasing. Specific cavity laser
designs can be suggested, such as distributed feedback lasers (DFB) or
distributed Bragg reflector lasers (DBR), to improve the single-mode laser
performances: a grating is designed along the laser cavity or in the laser
mirrors to suppress the propagation or reduce the reflectivity of undesired
longitudinal modes.

2) Since a realistic optical cavity has a finite transverse cross-sectional area, the
resonant optical field in the laser cavity cannot be a plane wave. Therefore,
there exist certain modes called transverse modes, which differ in their
transverse distributions of the field in the optical cavity. Since the transverse
modes must be sustained by the cavity boundary conditions, it is clear that
the transverse modes are modes that reproduce themselves after a round-trip
pass in the cavity although they can be attenuated or amplified in amplitude
and phase shifted. The transverse modes that exist depend on the optical
properties of the gain medium and by any boundary conditions imposed on
the wave equation by the optical structures in the medium. The transverse
modes are usually described in a rectangular basis by the Hermite–Gaussian
functions or are also called TEMm,n modes. Figure 3.1 shows different optical
patterns observed in a VCSEL (see hereafter for a more complete overview of
VCSEL dynamics) for different injection currents. The conventional transverse
electro-magnetic (TEM) solution is the TEM0,0 mode with a Gaussian radial
intensity profile, but other combinations of higher-order transverse modes
can be observed when increasing the optical power.

3) VCSELs exhibit several advantages over the conventional edge-emitting semi-
conductor lasers: very small threshold current (less than mA), single longi-
tudinal mode emission, circular output beam profile with narrow divergence,
on-wafer testing capabilities and the possibility to easily fabricate large bidimen-
sional laser arrays. However VCSELs also exhibit peculiar light polarization
properties. In general, VCSELs emit a linear polarization with its linear
direction oriented along one of the two preferential crystallographic directions
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Figure 3.1 (a) Optical power versus injection current for a
6 μm oxide aperture VCSEL, (b) near-field optical patterns
at different injection currents: (A) 3.0 mA, (B) 6.2 mA, (C)
14.7 mA, and (D) 18 mA. Taken from C. Degen et al. [1].
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[110] and [1–10] for VCSELs grown on substrate oriented in (100). The presence
of two lasing modes with orthogonal linear polarizations has been attributed to
residual polarization anisotropies emerging from the fabrication process. As
a result of the residual linear birefringence, the two LP modes exhibit slightly
different wavelengths and since the gain curve in semiconductor lasers is wave-
length dependent, the two modes exhibit also slightly different gains. In some
VCSELs, the light selects at threshold its polarization among the two orthogonal
LP modes, and the light polarization remains stable whatever the modifications
of the laser operating conditions. However, most often the light polarization is
not well defined and may strongly vary depending on the temperature or the in-
jection current. A very common observation is the polarization switching (PS),
which occurs when increasing the injection current [2]: the VCSEL starts lasing
at threshold in one of the two LP modes, but as the current increases, the VC-
SEL polarization switches to the orthogonal LP mode. Two-polarization-mode
emission has also been reported close to the lasing threshold [3]. As we increase
the injection current further, multiple transverse modes start lasing and the
multitransverse mode emission can also modify the polarization properties of
the emitted light: the first-order transverse mode usually lases with a linear
polarization orthogonal to one of the fundamental transverse modes [2].

4) In several and sometimes unintentional situations, a semiconductor laser is
subject to optical feedback, that is, when part of the emitted light is reflected
and reinjected back to the laser with a given time delay (the time for the light
to make a round trip in this extended cavity). A compound cavity is created
between the laser output mirror and the external mirror creating an optical
feedback. A typical model used to study the effects of optical feedback is the
so-called Lang–Kobayashi (LK) model [5]: it consists of a set of two differential
equations for the optical field and the carrier inversion, and moreover the
differential equation for the field contains a time-delayed field variable to
account for the optical feedback. The LK model considers a single longitudinal
mode laser with no transverse degrees of freedom. Without optical feedback the
laser therefore emits with a single-frequency lasing mode. When looking for
the steady-state solutions or lasing modes of this laser system, it appears that
besides this free-running lasing mode, additional lasing modes with different
frequencies can be created in pairs when increasing the feedback strength [6].
These modes are called ECMs. Figure 3.2 shows a typical dynamics observed
when a semiconductor laser is subject to a relatively weak optical feedback:
the laser hops between different ECMs at irregular time intervals. A frequency
versus time analysis allows one to distinguish between the ECMs and their
frequency splitting. The frequency separation between ECMs is related to the
external cavity length and therefore also to the time delay. As will be shown in
the following sections, the possibility for the compound-cavity laser to sustain
lasing in several frequency-splitted ECMs allows for the observation of complex
new nonlinear dynamics features. ECMs and their stability properties are also
discussed in Chapter 6 by Otto et al. when analyzing the sensitivity of QD lasers
to optical feedback.
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Figure 3.2 Hopping between external-cavity modes in a
laser diode with weak optical feedback, and for two different
values of the feedback strength. Taken from [4].

3.3
Low-Frequency Fluctuations in Multimode Lasers

Subject to external, delayed, and optical feedback, laser diodes present a large variety
of qualitatively different dynamical behaviors. Among them, the low-frequency
fluctuation (LFF) regime consists of sudden dropouts in the laser intensity followed
by gradual recoveries [7]. The time between power dropouts is a random quantity,
but on average is much larger than any of the laser system time-scales (in particular,
the period of the RO or the external-cavity round-trip time). A close look into the
intensity time trace shows that besides this slow time scale, the laser is also
firing sequences of pulses on a much faster, picosecond time scale. A popular
interpretation of the LFF phenomenon relies on the LK equations, which assume
a single-mode operation of the laser and a weak or moderate amount of external
optical feedback. In experimental studies, however, the semiconductor laser is often
lasing on several longitudinal models in the case of edge-emitting lasers (EELs),
or with two orthogonal polarization modes in the case of VCSELs. The impact of
multimode emission on the characteristics of the LFF regime has been investigated
by several groups in the recent years. Here is a summary of the main achievements.

1) Experiments on EELs have shown that multimode operation often occurs
within the LFF regime, unless the laser is forced to operate in a single
longitudinal mode by the use of a grating or a frequency etalon. They found
that the mode competition results in either inphase or antiphase pulsating
dynamics in the individual modes on a picosecond time scale, together with
often synchronous dropouts on the slow time scale of the LFF [8, 9]. As a
result the total intensity dynamics (as one would observe if not resolving the
individual longitudinal mode dynamics) may be less strongly pulsating than
the individual mode dynamics. The conclusion is important because one could
observe a qualitatively very different LFF dynamics when looking into the
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total intensity or the individual mode dynamics. Theoretical works based on
either a multimode extension of the LK equations [10] or a model derived
from the Tang–Statz–de Mars equations [11] have been able to reproduce this
interesting feature of the multimode LFF dynamics.

2) Often in experiments looking for chaotic LFF dynamics, a frequency selective
optical component such as an etalon or a grating is often placed in the external
cavity. This device is adequately tuned so that only one longitudinal mode is
selected and reinjected into the laser cavity. The other modes are not subject to
the optical feedback and are called free modes. In this way, the laser is restricted
to oscillate essentially in the selected mode. However, experiments have shown
that intensity bursts in the free modes occurring simultaneously with dropouts
in the mode selected by the feedback [13]. Using a multimode extension of
the LK equations, we have reproduced qualitatively similar dynamics – see
Figure 3.3 [12]. It appears that the sudden bursts in the free modes is caused by
a sudden increase in the carrier density that results from the dropouts in the
selected longitudinal mode. The burst lasts until the carrier density decreases
to reach again its almost steady state value.

3) LFF has also been found in simulations of VCSELs subject to optical feed-
back from a distant mirror [14]. As mentioned above, VCSELs exhibit many
differences with EELs and, in particular, may exhibit a switching between
two orthogonal LP modes. This two-mode feature of VCSELs and the related
optical bistability may be responsible for the new dynamical features not seen
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in conventional semiconductor lasers. The LFF dynamics of VCSELs consists
of two qualitatively different regimes [15]: one called type I LFF, where the
two polarization modes exhibit synchronous power dropouts and other called
type II LFF, where one of the two modes exhibits power dropouts immediately
followed by power bursts in the orthogonal mode. As has been demonstrated
theoretically, the important parameters deciding on the type of LFF dynamics
are the linear birefringence and dichroism inherent to the epitaxial growth of
the VCSEL cavity. Figure 3.4 shows the transition between the two types of LFF
dynamics, when varying the strength of the VCSEL cavity linear anisotropies.
Type I and type II LFF also lead to different dynamics in the total intensity on
the time scale of the fast pulsing underlying LFF [16], in a similar way than
explained above for multimode EELs. Experiments have later confirmed these
features of LFF in VCSELs [17].
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Figure 3.4 Simulated LFF dynamics in VC-
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3.4
External-Cavity Mode Beating and Bifurcation Bridges

The LFF dynamics disappears for short external cavity (EC) (typically less than 1
cm) as the frequency of the EC 1/τext becomes much larger than the frequency
of the laser RO. However, Tager and Petermann [18], have shown that new
dynamical regimes, other than LFF, may appear at short EC and correspond to
fast harmonic oscillations of the laser intensity, at a frequency close to the EC
frequency. Following their definition, EC is called short if the EC round-trip time
τext is such that ωROτext = O (1), where ωRO is the RO angular frequency. Whether
the laser diode operates in the short or the long EC regime can therefore be roughly
classified in comparison with the frequency of the RO in the free-running laser
(i.e., the laser without optical feedback). Thanks to mathematical continuation
techniques (see also Chapter 7 by Krauskopf and Walker), these high-frequency
intensity oscillations have been identified by Pieroux et al. [19] as the result of a
Hopf bifurcation bridge between two steady-state solutions of the compound-cavity
problem, that is, between two ECMs. The Hopf bifurcation bridge means that one
ECM solution exhibits a Hopf bifurcation and the emerging branch of time-periodic
solution connects to another Hopf bifurcation located on another ECM solution.
ECMs are therefore connected by bridges of time-periodic solutions. From a physics
point of view, these bridges correspond to a beating between the two interacting
ECMs. The beating yields high-frequency oscillations of the laser intensity, as
reported by Tager and Petermann [18].

The possibility for the laser diode to sustain lasing in two frequency-separated
ECMs and the consecutive beating between these modes has given new interesting
ways to generate all-optically signal at high frequency (theoretically tens of gigahertz
or even more). However, a drawback seems to rely on the fact that the high-frequency
self-pulsation results from a beating between a stable ECM and an unstable
ECM (also called an antimode). More specifically the previously mentioned bridge
between two Hopf bifurcations is unstable and the time-periodic beating solution
destabilizes with a torus bifurcation to quasiperiodic or even chaotic dynamics.
If one would think of an application, this would mean also that significant effort
must be made to precisely control the feedback strength and the feedback phase in
an experiment. This situation is illustrated in Figure 3.5a. However, interestingly
when decreasing the laser linewidth enhancement factor (α) the bifurcation bridge
creating the beating solution can be fully stable, see Figure 3.5b–d. The reason for
this is that the connection of Hopf bifurcation points now happens between two
stable ECMs. Not only a decreasing α leads to stabilization of ECM beating but also
it doubles the beating frequency, all other parameters being fixed [20]. Laser diodes
with small α have become today of great interest, in the context of the development
of QD and quantum cascade semiconductor laser diodes (Chapters 1 and 4).

Similar self-pulsating dynamics resulting from ECM beating have been also
reported in VCSELs with polarization rotating optical feedback [21] and have been
attributed to Hopf bifurcation bridges between orthogonally polarized ECMs [22].
Experimental evidence of the beating mechanism between ECMs (and the resulting
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Figure 3.5 Numerical bifurcation diagrams
showing the extrema of the laser inten-
sity I as a function of the optical feedback
rate η, for different values of the linewidth
enhancement factor: (a) α = 4, (b) α = 2,
(c) α = 1.25, and (d) α = 1. Full and bro-
ken lines correspond to stable and unsta-
ble solutions, respectively. All figures show
a closed branch of two ECM solutions

connecting two Hopf bifurcation points
(symbol �). This branch changes stabil-
ity at a torus bifurcation point (symbol ∗).
The torus bifurcation point progressively
moves to the right Hopf bifurcation point
as α progressively decreases. In (d) the
closed branch of two ECM solutions is sta-
ble. Taken from [20].

high-frequency intensity oscillations) has been given in two different systems: laser
diode with T-shaped EC (double feedback) [23] and two-section semiconductor laser
with an integrated passive cavity [24].

3.5
Multimode Dynamics in Lasers with Short External Cavity

The LFF dynamics typically occurs when a laser is subject to a moderately strong
optical feedback from a typically quite long EC (tens of centimeters). When the
EC delay time decreases and becomes comparable or smaller than the RO time
scale of the laser dynamics, it is said that the EC is short – as detailed in
Section 3.3. Besides the ECM beating, another peculiar dynamics that has been
recently observed experimentally is called the RPP dynamics [25]: the laser fires
pulses at each EC round-trip time, but the amplitude of the pulses is modulated by a
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Figure 3.6 Polarization-resolved dynamics
of a VCSEL in the pulse package regime
at different increasing values of the injec-
tion current. In black (gray), we plot the
x(y)-LP mode of the VCSEL. The EC length
is around 6.5 cm. It shows how the mode

intensities tend to exhibit regular pulse pack-
age dynamics (case b) and progressively
more irregular pulsating dynamics as the in-
jection current increases and approaches a
VCSEL polarization switching point. Taken
from [28].

much slower envelope. The pulses are grouped by packages that repeat periodically
with the period of the slow envelope. A cascade of bifurcations on the ECMs leads
to a stable and robust quasiperiodic attractor at large values of the feedback strength
[26]. A progressive sweep of the EC length from short to long also allows observing
a transition from RPP type of dynamics to a LFF type of dynamics [27].

In Figure 3.6 shows an example of RPP dynamics, but here observed in a multi-
mode laser, that is, a VCSEL lasing simultaneously in two orthogonal polarization



3.6 Polarization Mode Hopping in VCSEL with Time Delay 67

modes [28]. In black (gray), we plot the x(y)-LP mode intensity of the VCSEL. At the
lowest value of the injection current, J = 3.2 mA (Figure 3.6a), the amplitude of the
pulse peaks is still small and the shape of the single pulse package (PP) envelope
is not very regular. However, the envelope of the packages can be clearly identified,
which indicates that the PPs in the two LP modes are almost periodic. The PP
dynamics in the two LP modes can be much better recognized at J = 3.4 mA
(Figure 3.6b), however, it can be seen that the polarization-resolved PP dynamics
is not as regular as for the total intensity. The reason for this is that we observe po-
larization mode competition, underlying the PP dynamics, reducing the regularity
of the PP dynamics in each polarization mode. This mechanism becomes more
relevant at a higher injection current, approaching the solitary VCSEL polarization
switching (PS) point. Accordingly, we find a gradual loss of the regularity of the PP
dynamics as J is increased from 3.2 to 3.8 mA. A closer look at the dynamics pre-
sented in Figure 3.6 reveals that in some cases the PP dynamics temporarily takes
place in one of the LP modes only, whereas the second mode is almost turned off.
In other cases the PP dynamics take place in the two LP modes simultaneously. We
refer to the first case of dynamics, in which the pulses are emitted in one LP mode
only, as type I PP dynamics. The second case of dynamics, in which the PP dynamics
take place in the two LP modes simultaneously, is called type II PP dynamics.

3.6
Polarization Mode Hopping in VCSEL with Time Delay

In the previous sections, we have already introduced the interesting features of
VCSEL polarization dynamics. The fact that such a laser easily emits two modes
with slightly different frequencies and almost similar gain/loss ratio makes it very
appealing for the study of mode competition in configurations where the laser is
brought into complex nonlinear dynamical scenarios. We have already mentioned
the inphase or antiphase polarization dynamics occurring either in chaotic LFF
dynamics or in the RPP dynamics, which are characteristic of optical feedback
bifurcations. Here, we shall focus more on the bistable properties arising from
the (polarization) mode competition of VCSELs and how they interplay with time
delay. We shall introduce our prototype experiment for the study of the interplay
between bistable mode switching and time delay: a VCSEL subject to a weak optical
feedback and noise. The experimental demonstration of CR is then a remarkable
example of how much noise can influence mode competition and switching. Other
interesting features that relate to polarization bistability and noise can be found in
Chapter 2 by Zamora-Munt and Masoller.

3.6.1
Polarization Switching Induced by Optical Feedback

It is well known that a weak optical feedback modifies the threshold gain of a
semiconductor laser as a function of the constructive or destructive interference
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conditions between the emitted and the reflected lights. As mentioned above, in
the VCSEL configuration, the two orthogonal LP modes have slightly different
optical frequencies and also slightly different threshold gains. The optical feedback
effect would therefore modify the threshold gain difference between the two LP
modes, by adding a modulation term of the form κ [cos(ωxτ ) − cos(ωyτ )], where
ωx,y are the optical frequencies of the LP modes, κ is the feedback strength (amount
of light reinjected back into the cavity relative to the amount of emitted light)
and τ is the delay time in the EC. For a large enough feedback strength the
threshold gain difference between LP modes may therefore change its sign and
if the mechanism determining PS is related to the change of net gain between
modes, then this also means that PS would occur. A progressive sweep of the EC
length and therefore of the delay time would induce several PSs for specific values
of the delay time. Similarly, if the injection current is increased progressively then
the optical frequencies of the LP modes may exhibit a significant red shift that
finally modifies the argument of the cosine functions and may lead to successive
PSs for specific values of the injection current.

We have made the corresponding experiment, as reported in [29]. We use a
proton-implanted 850 nm VCSEL with a threshold current of 6 mA (in the solitary
case). The solitary VCSEL emits light in the fundamental transverse mode with a
stable linear polarization along the horizontal direction (x) for currents up to 2.25
times the threshold current. The vertical LP mode (y) is strongly suppressed. The
frequency splitting between the two LP modes is measured to be about 8 GHz.
The VCSEL is then subject to an optical feedback from a distant semitransparent
mirror. The EC length is 20.2 cm (delay time equal to 1.3 ns). Figure 3.7 shows the
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L–I curve of the solitary VCSEL (thin line) together with the L–I curves resulting
from the weak optical feedback (large black and gray lines).

The first effect of the optical feedback on the L–I VCSEL characteristics is to
reduce the threshold condition. In our case, the feedback strength is such that
the threshold current is reduced by about 2%. The solitary VCSEL exhibits lasing
only in the x-LP mode, but even this weak amount of optical feedback induces a
dramatic effect on the L–I curve. The polarization-resolved L–I curve with optical
feedback exhibits a so-called channeled behavior, that is, it shows multiple PSs at
periodically separated values of the injection current (see the inset).

3.6.2
Polarization Mode Hopping with Time-Delay Dynamics

When a VCSEL exhibits a PS as a function of the injection current, it is typically
observed that the polarization state is not well defined around the switching point:
a continuous transition between the two LP modes occurs as we increase the
injection current from a value slightly below the switching point to a value slightly
above the switching point. If we set the injection current close to the PS point, we
observe that the light randomly alternates between emission of the x-LP mode and
emission of the y-LP mode, a situation called polarization mode hopping [30]. From
the statistical analysis of the mode-hopping dynamics, it appears that the dwell time
in one of the two LP modes follows a Kramers law, with a probability distribution
function exponentially decaying with time. The mean dwell time depends on the
injection current and spontaneous emission level.

In our optical feedback experiment also, a polarization mode hopping is observed
if we fix the injection current at one PS point [29]. The laser system then randomly
dwells in the x- or the y-LP mode, on a slow time scale; see Figure 3.8a. The two
LP modes are anticorrelated at the time scale of the slow mode hopping. This
behavior resembles that of the mode-hopping solitary VCSEL. However, a careful
observation shows that superimposed on the slow polarization mode hopping, a
fast oscillatory behavior appears, at the frequency of the EC (750 MHz), that is,
the inverse of the optical feedback time delay. These fast oscillations more clearly
appear during an attempt to or a successful polarization switch. Figure 3.8b shows
an example of fast oscillations in the two LP modes during a PS. It shows that the LP
modes are anticorrelated at the time scale of the EC frequency. These oscillations
therefore vanish at the time trace of the total intensity; see Figure 3.8c.

To further compare the statistical properties of this optical feedback induced
mode hopping with those of the mode hopping in solitary VCSELs, we measure the
residence times for the x- and y-LP modes (also called dwell times) from the stored
oscilloscope time traces [31]. In a symmetric mode-hopping regime, these two
dwell times exhibit the same distribution and consequently the same statistical
properties. The resulting experimental distribution of the residence time (RTD)
in one LP mode is then shown in Figure 3.9. The RTD is distinctly different
from the one reported in the experiments on solitary mode hopping VCSELs [30].
Instead of an exponentially decaying behavior for all residence times, the RTD of
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delayed mode-hopping VCSEL exhibits a discontinuity for small residence times.
The slow mode hopping is responsible for the exponential decay at large residence
times. This exponential decaying RTD is typical for the polarization mode hopping
in solitary VCSELs. However, the fingerprints of the time-delayed feedback, that
is, the fast intensity oscillations at the EC frequency that complement the slow
mode hopping, are responsible for RTD at smaller residence times. As these fast
oscillations always appear during a PS (or an attempt to switch), the probability
for measuring residence times up to the EC round-trip time is quite large. Our
experimental results confirm theoretical predictions made by Masoller on a simpler
system, that is, the presence of a time-delayed feedback in a bistable system yields
an increased probability to find events at times smaller than the delay time [32].
Moreover, the RTD exhibits an increased probability at each multiple of the delay
time. Indeed, because of the stochastic nature of the mode hopping and the
corresponding noise intensity fluctuations, some rapid oscillations do not cross
the detection threshold. As a result, we observe an increased probability to detect
the fast oscillations with one, two, and more cycles missed, which corresponds to
an oscillatory behavior in the RTD (see the inset of Figure 3.9).

The inset also shows the distribution of what we define as a joint residence
time in black line, that is, the time interval needed for the system to visit the two
LP modes consecutively. Interestingly, while the statistics for each LP state shows
a discontinuity close to the delay time, the statistics of the joint residence time
distribution (JRTD) shows a clear maximum at the delay time. The time the system
spends in visiting the two modes consecutively tends to follow the regularity
imposed by the EC and its associated round-trip time, independently on whether
the system spends on average more time in one mode or in the other.

A theoretical study based on the two-mode rate equations reproduces qualitatively
well the optical feedback induced PS, mode hopping, and the corresponding RTD.
The numerical simulations for different values of the spontaneous emission rate
confirm that the noise plays an important role in the slow mode-hopping dynamics,
the mean dwell time tends to decrease as the noise level increases [29]. The
polarization dynamics under investigation is therefore an interesting example of a
bistable dynamics controlled by noise and influenced by the optical feedback delay
time. In the following, we make use of this new interesting polarization dynamics
to demonstrate experimentally a more general concept: the existence of CR in a
bistable system with time delay, that is, the fact that adding an optimal amount of
noise to the system dynamics may finally bring the system into a pulsating dynamics
with optimal regularity. As discussed in [31], the CR in our VCSEL configuration
is better observed when the time delay is of the same order of magnitude than the
mean dwell time in the LP modes (typically several tens of nanosecond).

3.6.3
Coherence Resonance in a Bistable System with Time Delay

It is commonly accepted now that the noise can play constructive role in nonlinear
dynamical systems. After the seminal paper of Benzi et al. [33] the phenomenon
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of stochastic resonance, namely, the fact that adding noise can better synchronize
dynamical system to an external periodic signal, has attracted a lot of interest (for a
review, see [34]). It has later been realized that noise can enhance regular dynamics
in nonlinear systems even in the absence of external signal, when an internal time
scale is present in the system [35]. This phenomenon was initially considered as
stochastic resonance in autonomous system and later named CR [36]. CR has been
first predicted for excitable dynamical systems, that is, systems that emit quasireg-
ular pulses as a result of an excitation threshold and with a refractory period. It has
been demonstrated experimentally in several systems including semiconductor
lasers subject to optical feedback and driven into chaotic excitable dynamics [37].
Theoretical works on different models furthermore reported that not only excitable
but also bistable or multistable systems driven by noise can exhibit CR [38], as also
confirmed experimentally in bistable chaotic electronic Chua circuits [39]. Recently,
CR has been predicted in another class of systems, which exhibit bistability
together with time delay [40]. Time delay, bistability, and noise are important
ingredients in a large variety of systems in physics, biology, and chemistry.

In the following, we summarize an experimental demonstration of CR in a
bistable time-delayed system, namely, a VCSEL subject to optical feedback [41].

Figure 3.10 shows a typical time trace of the LP mode intensity when the injection
current is set close to a PS point (induced by optical feedback). The output power
in each LP mode is made of successive pulses emitted with a repetition rate given
by the long EC delay time (27 ns) that complement a random switching dynamics
between the two LP mode states. 1 and 2 are the defined residence times, and JRT
is the joint residence time as defined above. The system dynamics is not symmetric
here, since the system spends more time in one mode than the other. However, as
mentioned above, the joint residence time is always very close to the value of the
delay time, irrespective of the mode-hopping symmetry.

We then add noise to the injection current of our VCSEL and analyze the effect
of the noise level in the distribution of the residence times and, in particular, of
the joint residence time, since this directly reflects the optical feedback induced
mode-hopping dynamics. Figure 3.11 plots the experimental results for three
different noise levels.

If the noise is weak, the system needs a lot of time to consecutively visit the
two stable states and the peak of the JRTD at the EC round-trip time (27 ns) is
very small (Figure 3.11a). As the noise strength is increased the peak at 27 ns
dramatically increases reaching its maximum (Figure 3.11b). For higher noise
intensities, more and more fast PSs occur and the background masks the peak
structure (Figure 3.11c). The right panel (Figure 3.11d) confirms the existence of
an optimal noise level for which the JRTD exhibits a maximum peak at the delay
time. By plotting the evolution of the area of the first peak of the JRTD once,
the background is subtracted as a function of the noise intensity, we observe a
maximum value for a noise intensity close to −120 dBm Hz−1. This constitutes
a clear evidence of CR in our system. Different indicators have complemented
our observations. In particular, we have observed the RF (resonance frequency)
spectrum of the laser output for different noise levels. A peak appears close to the
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Figure 3.10 (a) Experimental time trace of the VCSEL LP
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long EC frequency and the peak height relative to the RF spectrum noise floor
reaches a maximum for a given noise level (similar to the noise level that brings
the maximum JRTD value at the delay time).

3.7
Polarization Injection Locking Properties of VCSELs

As has been demonstrated in the previous sections, VCSELs and their unique
two-mode dynamics can show nonlinear dynamics not seen in conventional
single-mode EELs. We have so far illustrated cases where the laser is subject to either
a strong optical feedback (LFF or RPP dynamics) or a weak optical feedback (PS and
bistable mode hopping). In this section, we show that the two-polarization-mode
properties of VCSELs also impact on the bifurcation scenarios leading to chaos in
the presence of an external optical injection.
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3.7.1
Optical Injection Dynamics

Optical injection is an important case of additional degree of freedom that can
easily destabilize a semiconductor laser. A laser called slave laser (SL) is injected
with light from an external laser source (master laser, ML). The two lasers emit in
approximately the same wavelength range and it is assumed that an optical isolator
prevents reciprocal coupling between the two lasers. Depending on the strength
of the injected signal, the SL can either change its frequency of operation to that
of the ML, and thus, lock to the ML frequency, or it may also engage in a more
complicated dynamics in response to the external signal. The injection locking was
known more than 30 years ago in several types of oscillators [42]. Its application
for semiconductor lasers is of great interest. Indeed the injection locking of
semiconductor lasers was shown to significantly improve the coherence properties
of the emitted signal, leading, for example, to a reduction of the mode hopping
and mode partition noise, a reduction of the laser linewidth and of the frequency
chirping, and an enhancement of the modulation bandwidth.

We can summarize the dynamics of a laser with optical injection with three
regimes of operation (for a review, see [43]):
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• Stable locking region in which the SL is frequency locked to the ML, which
corresponds to the ‘‘steady state’’ of the laser system. For locking to occur,
two conditions must be satisfied: (i) the detuning between the frequency of the
injected field and the RF of the laser diode should not be too large and (ii) the
injected power should be large enough.

• Nonlocking region in which the SL does not manage to lock to the frequency of
the ML, but the nonlinear interaction between the wave component at the slave
frequency and the wave component at the master frequency being amplified by
the SL active medium may give rise to interesting wave-mixing effects.

• Destabilized locking region in which the stationary locked state is destabilized to
a more complex dynamics such as a time-periodic dynamics, a period doubling
(PD) regime, quasiperiodic, or even chaotic behaviors.

While numerous theoretical and experimental papers have dealt with the op-
tical injection-induced instabilities and dynamics in single-mode EEL, only few
contributions have so far addressed the question of the influence of multimode
laser emission. The question of multimode optical injection dynamics has been of
interest recently in the context of two-mode laser systems:

1) In a pioneering experiment in 1993, Pan et al. have studied a first configuration,
where a VCSEL is subject to optical injection. The VCSEL emits in a single
x-LP mode and is injected with light polarized along the orthogonal direction
(y) [44]. This configuration is called orthogonal optical injection. For sufficiently
large injection strength, the VCSEL switches its polarization to that of the
injected light, and may exhibit an injection locking depending on the frequency
detuning between the two lasers. The injection power required for PS depends
on the frequency detuning and moreover the PS occurs with a large bistability
region. In the following, we shall summarize several additional features
in the same experimental configuration: first, the PS induced by optical
injection is accompanied by severe laser instabilities, and second that the
PS phenomenon interplays with the bifurcations typically observed in optical
injection problems and also makes possible the observation of new bifurcation
mechanisms.

2) Recent investigations have concerned a so-called two-color laser device, that
is, a device that can lase simultaneously on two different modes with possibly
quite a large (terahertz) frequency spacing [45–47]. One of the two modes is
subject to optical injection and still the laser exhibits a large variety of two-mode
inphase and antiphase dynamics including limit cycle, quasiperiodicity and
chaos [48]. The large frequency spacing between the lasing modes makes it
possible to investigate the properties of optically injected multimode lasers
far beyond the approximation of the single-mode laser equations. Among the
interesting features, it is worth mentioning a bistability between a one-mode
injection-locked state and a two-mode equilibrium state, that is, bistability
between two steady states. As it is the case for VCSELs, such a bistability can
be applied to all-optical signal processing [49]. This point is further discussed
in Chapter 10 by Amann.
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3.7.2
Polarization and Transverse Mode Switching and Locking: Experiment

Details on the performed experiments can be found in [50, 51]. An oxide-confined
quantum well VCSEL emitting around 845 nm is used as a SL. Optical injection is
achieved from an EC tunable ML. The solitary VCSEL threshold is about 1 mA and
the VCSEL switches its polarization from horizontal to vertical LP mode at 4.60 mA
and backwards at 2.25 mA, forming a large hysteresis region. The PS is from the
low to the high frequency LP mode. For currents above 5 mA, first-order transverse
mode appears. In our experiment, the solitary VCSEL is biased at 2.105 mA, so
that it emits only in the fundamental transverse mode with horizontal polarization.
The injected LP light is set to be vertical.

In order to represent the richness of the polarization dynamics in VCSEL with
orthogonal optical injection, we show in Figure 3.12 the boundaries of qualitatively
different dynamics in the plane of the injection parameters (the detuning and the
injected power). The injected power has been normalized to the output power of
the VCSEL Pout = 1.28 mW at the bias current of 2.105 mA and has been taken
in logarithmic scale log(Pinj/Pout). We have defined the frequency detuning as the
frequency of the ML minus the frequency of the SL. For each value of the frequency
detuning, we perform a sweeping along the horizontal axis, that is, increasing and
then decreasing the injected power. The horizontal axis is limited in the positive
part by the maximum output power of the ML. The maximum negative detuning
corresponds to the largest detuning for which we observe injection locking with
the maximum injected power. The polarization switch on and switch off points
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for increasing (decreasing) the injected power are represented by the lines with
diamonds and squares (lines with dots and triangles) in Figure 3.12. In the regions
S1 and S2, the frequency of VCSEL emission is locked to the ML. However, in the
case of S2, it is the first-order transverse mode and not the fundamental transverse
mode that locks to the master laser, the fundamental transverse mode being then
suppressed when crossing the line with crosses. The unlocking of the first-order
transverse mode happens at smaller values of Pinj, describing bistable region B2
between the fundamental and the first-order transverse mode both with the same
polarization.

We observe two polarization bistable regions in a regime of fundamental mode
emission, which correspond to two different ways of PS. The first one is with
frequency locking (B1). The second polarization bistable region (B3) is without
frequency locking. The two bistable regions are connected at a detuning of 2
GHz, which coincides with the birefringence frequency splitting between the two
VCSEL LP modes. This means that when the ML is biased at the frequency of
the VCSEL vertical mode (the suppressed mode), a dramatic change of dynamics
occurs: from PS with injection locking to PS without locking. For larger positive
or negative detunings, the switching power is larger, and moreover the switching
power is larger for a negative than for a positive detuning value. It is worthy
to notice that the widths of the injection locking regions S1 and S2 and of the
bistability region B1 increases with the detuning. By contrast, the width of the
bistability region B3 remains approximately constant when changing the frequency
detuning. This bistable region B3 is also strongly influenced by the locking of
the first-order LP mode (S2), its borderline turning backwards at a detuning
of 50 GHz.

The mapping of dynamical states shows that richer nonlinear dynamics including
PD route to chaos and even reverse PD from the chaotic zone are found for
detunings in the range of 2–10 GHz. Cascade of complex dynamics involving
chaotic instabilities is presented in Figure 3.13 corresponding to a detuning
of 2 GHz. As the injection strength increases, the injection-locked steady state
(Figure 3.13a) undergoes a Hopf bifurcation to a limit cycle at the RO frequency
(Figure 3.13b). For larger injected power, harmonics of the RO frequency are even
observed (Figure 3.13c). As the injection power is increased further, the injected
VCSEL undergoes a PD dynamics (Figure 3.13d), leading to a chaotic dynamics
(Figure 3.13e). Chaotic instabilities correspond to the presence of a large pedestal
in the VCSEL spectra and involve both vertical and horizontal LP modes. The case
(Figure 3.13f ) shows that, if the injected power is increased further, the chaotic
regime is exited with a reverse PD cascade, leading to a limit cycle dynamics
(Figure 3.13g). For still larger injection strength the limit cycle dynamics may even
undergo PD again, as shown in the case (Figure 3.13h).

In the following, we analyze more systematically the competition between
transverse modes and injection locking phenomena that occur when the detuning
is positive and large, close to the frequency separation between fundamental and
first-order transverse modes (around 150 GHz in our case) [52].
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Figure 3.13 Samples of polarization-resolved optical spectra
showing a period doubling cascade of bifurcations to chaos
(e), following by a reverse period doubling cascade, as the
injection strength increases for a fixed detuning (24 GHz).
Taken from [50].

Figure 3.14 shows the mapping of the VCSEL subject to optical injection for a very
large positive detuning range, that is, from 2 to 180 GHz. For a fixed detuning value,
polarization-resolved dynamics as well as transverse mode competition are analyzed
when the injection strength is scanned. If the injection strength is increased, and
depending on the frequency detuning, different switching scenarios are resolved. A
switching mechanism that involves the VCSEL fundamental orthogonal transverse
modes, that is, from the horizontal (x-LP) to the vertical (y-LP) mode, is observed
for the whole frequency detuning range. The corresponding boundary is labeled
by black triangles. This boundary exhibits two minima for the switching power.
A first minimum is located at a detuning of 2 GHz for which PS is achieved
at 7.1 μW. A second minimum for the switching power is found for a detuning
of 150 GHz and an injection power of 623.9 μW. It is worth mentioning that
the second minimum is at much larger power than the one for a detuning of 2
GHz. We analyze in more detail the transverse mode competition behavior for
detunings ranging from 61 to 120 GHz. With increasing the injection power we
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first observe PS between the fundamental gaussian mode polarized along x, LP01,x ,
and the fundamental gaussian mode polarized along y, LP01,y. These PS points
are denoted by black triangles. When increasing further the injection power, we
observe injection locking of the first-order transverse mode polarized along y,
LP11,y mode – its frequency locks to the one of the ML, together with suppression
of the fundamental transverse mode LP01,y. The corresponding injection locking
boundary is denoted by black diamonds. As the injection strength is increased,
the VCSEL is initially frequency pushed but still emits a horizontal LP mode.
For a further increase in the injection strength, switching from horizontal x-LP
to vertical y-LP fundamental mode is achieved. By still increasing the injection
strength, an abrupt injection locking of the first-order transverse mode to ML
with suppression of the fundamental mode occurs. Bistability is observed if the
injection power is decreased after injection locking of the mode is achieved, that
is, the VCSEL unlocks for an injection strength smaller than the one necessary
to induce the locking regime (see the boundary labeled with light gray squares in
Figure 3.14). The width of the bistable region associated to the locking of the LP11,y

mode decreases as we increase the detuning as indicated by the zone with a dark
gray shadding.
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For frequency detunings larger than 120 GHz, injection locking of the LP11,y

mode accompanied by suppression of the fundamental transverse mode LP01,y is
not observed anymore. Figure 3.15 represents the situation for which the VCSEL
is under optical injection but the injection strength is not sufficient to induce PS
(Figure 3.15a). By increasing the injection level PS from x-LP to y-LP fundamental
mode is achieved (Figure 3.15b). A further increase in the injection strength leads
to a strong competition between the LP01,y and LP11,y modes. The onset of such
a mode competition is shown on the mapping in Figure 3.14 by black circles,
which correspond to the observation of a progressive decrease of the intensity at
the SL frequency and a relatively strong increase of power at the ML frequency
(Figure 3.15c). Again, at a much stronger injection, a weak increase of the intensity
at the SL frequency, that is, a recovery of the y-LP fundamental mode, has been
observed; see Figure 3.15d and the inset. As shown in Figure 3.14, the transverse
mode competition appears at much lower injection power for a detuning of 150
GHz, which corresponds to the second minimum of the switching power. For
larger positive detunings up to around 165 GHz, the mode competition is still
resolved but at progressively increasing injection levels. Above this detuning range
and as we increase the injection power, PS between the fundamental modes is still
observed, but afterwards the VCSEL keeps emitting an unlocked y-LP fundamental
mode.
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3.7.3
Bifurcation Picture of a Two-Mode Laser

The experimental results were detailed before clearly pointing out the important
role played by both polarization and transverse mode competition in VCSELs on the
laser dynamics. On the basis of a theoretical model for VCSEL, it is possible to gain
insight into the bifurcation scenarios leading to nonlinear dynamics. A theoretical
approach for our VCSEL orthogonal optical injection configuration can be obtained
from the analysis of a set of rate equations. The PS mechanism in VCSELs can
be modeled using, for example, the spin-flip approach, as done in [53–56], but
we have obtained similar results using a two-mode model with gain compression
terms and not including spin-flip relaxation mechanisms [57].

It is possible to reproduce theoretically several of our experimental results, as
summarized hereafter:

• An increase of optical injection strength leads to PS with bistability. The range
of injection strength corresponding to the bistability region increases as the
frequency detuning increases, the minimum being obtained when the detuning
is close to the VCSEL frequency splitting between LP modes.

• Injection locking accompanies the PS mostly in the negative frequency detuning
side, whereas for positive detunings PS is typically accompanied by a PD route
to chaos and a transition to time-periodic unlocked dynamics.

• For large positive frequency detunings, a strong competition can occur
between transverse modes, which may lead to injection locking of a first-order
transverse mode with suppression of the VCSEL fundamental transverse
mode.

To bring new light into the bifurcation picture, we have made use of the
continuation techniques to follow the bifurcations of steady states and time-periodic
solutions in the plane of the injection parameters (frequency detuning versus
injection strength). Figure 3.16 shows a typical bifurcation mapping that we
obtained theoretically from the analysis of a set of equations for single transverse
mode VCSEL [55, 56].

Qualitative changes in the VCSEL dynamics are detected and followed using
the continuation package AUTO 97 [58]. Different bifurcation curves are plotted:
a saddle-node (SN), two Hopf (H1 and H2), and a torus (TR). The supercritical
and subcritical parts of each bifurcation curve are represented in black and gray,
respectively. When increasing the injection strength, the VCSEL switches its
polarization to that of the injected field. When decreasing the injection strength,
the VCSEL switches back to its free-running polarization but for a smaller injection
strength. These ‘‘PS off’’ (x-LP mode off ) and ‘‘PS on’’ (x-LP mode on) points
are shown with circles and squares, respectively. The PS curves interplay with the
bifurcation curves. SN and H1 are bifurcations on a stationary injection-locked state
and have also been reported in the case of optically injected EEL. In the conventional
case of EEL, the locking region is then delimited by the codimension two point G
where SN and H1 intersect. In our VCSEL system, the locking region is delimited
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the text. Together with the bifurcation lines
are shown the polarization switching points,
which therefore interplay with bifurcations to
nonlinear dynamics [55, 56].

by SN, H1 but also by a new bifurcation H2. The maximum detuning leading to
injection locking therefore stays well below the codimension-two saddle-node-Hopf
point G. Apart from its effect on the locking, H2 also affects the PS mechanism.
The supercritical part of H2 coincides with ‘‘PS on’’ points. Moreover, the smallest
injection strength needed to achieve PS is located on H2 and corresponds to a
dramatic change in the PS curve (see the solid vertical arrow in Figure 3.16). As a
result, the PS curve exhibits a snakelike shape with local minima of the injected
power required for switching. The observed shape agrees qualitatively with our
experimental results. Additional bifurcations on the time-periodic solutions (not
shown) lead to a PD route to chaos as observed experimentally and are located close
to these local minima in the PS curve.

The torus bifurcation Tr gives rise to a time-periodic dynamics at the RO
frequency in the noninjected mode (x) and to a wave-mixing dynamics in the
injected mode (y), which have been also found in experiment [55].

Interestingly, the model allows for another type of injection locking solution,
where the VCSEL locks its two orthogonal LP modes to the injected field [53, 54]
(not shown here). This two-mode injection-locked solution is observed when the
detuning is negative and such that the ML frequency is close to the frequency of the
noninjected mode of the solitary VCSEL. The two-mode injection-locked solution
is born from SN bifurcation and destabilizes through a Hopf bifurcation.
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3.8
Dynamics of a Two-Mode Quantum Dot Laser with Optical Injection

In the previous section, we have unveiled several dynamical features, which result
from polarization and/or transverse mode competition in VCSELs with optical
injection. Another example of two-mode laser has been discussed and is related
to a two-color laser with terahertz frequency spacing between modes with similar
power levels. Here, we discuss about another example of two-mode laser in the
presence of optical injection, namely, a QD semiconductor laser.

Self-assembled QD lasers and amplifiers have attracted much interest in recent
years. For example, they have shown a significantly reduced sensitivity to optical
feedback, resulting from a small linewidth enhancement factor and a strong RO
damping rate [60, 61]. These advantages make them appealing for high-frequency
direct modulation and isolator-free laser operation. The three-dimensional quan-
tum confinement of a QD gives rise to discrete energy levels for both electrons
and holes. GS emission, resulting from the recombination of a GS electron hole
pair, generally occurs at low injection currents. The finite number of QDs within
the active region and the discrete energy structure of QDs can lead, however, to
saturation of the GS already at moderate currents. As a result, the occupation of
the excited states (ES) grows with the current and the laser can start to lase from
these states too. Simultaneous emission from both states has been demonstrated
for a solitary QD laser in [62]. Figure 3.17 shows an example of such simultaneous
lasing in GS and ES observed experimentally in 1.55 μm. InAs/InP QD laser diodes
when increasing the pump power (normalized with respect to the GS pump power
threshold Pth). The two-mode lasing of QDs has been studied also in the context
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Figure 3.17 Room temperature emission
spectra of a QD broad area laser with six
QD stacked layers under a pulsed pumping
excitation. When increasing the pump power
(normalized with respect to the GS pump

power threshold Pth), we observe the simul-
taneous lasing of ground state (GS) (energy
centered on 0.82 eV) and excited state (en-
ergy centered on 0.87 eV). Taken from [59].
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of optical feedback [63] and for dual-wavelength mode-locking [64]. Chapter 1 by
Lüdge also details the physical modeling of QD devices including their two-mode
lasing properties.

When subject to optical feedback, it has been experimentally demonstrated that
both ES and GS modes can be excited simultaneously and that the two-mode
emission influences the properties of, for example, LFFs dynamics [63]. As dis-
cussed in Section 3.2, the LFF is made of power dropouts in the laser intensity
occurring at irregular time intervals. Experiments on QD two-mode lasers have
shown that for in the LFF dynamics the ES emits bursts of pulses simultaneously
to power dropouts in the GS dynamics. As a result the total intensity dynamics
is almost stationary. This result complements the previous investigations of LFF
on multilongitudinal mode EELs and two-polarization-mode VCSELs, and adds to
the conclusion saying that mode competition may strongly influence the chaotic
features of the total laser intensity dynamics.

Let us now discuss more specifically the case of optical injection. We have
studied a model for QD semiconductor laser that allows for lasing in both ES and
GS [65]. This theoretical work hence complements recent bifurcation analysis of a
single-mode QD laser with optical injection [66–68]. Owing to the large frequency
spacing between GS and ES (terahertz range), it is expected that the injected light
interacts directly only with the GS mode. In the model, carriers from the wetting
layer (WL) are first being captured into the ES and then relax to the GS. Both
capture and relaxation times depend on the fixed parameter corresponding to the
empty destination state, that is, ES for the capture process and GS for the relaxation
process, and on the actual occupation of the destination state. In the presence of
optical injection, we observe the following:

1) As it was also observed for two-mode VCSELs (see the previous section),
the two-mode QD laser system provides a new injection locking possibility,
where the GS is injection locked and coexists with an unlocked ES dynamics.
The locking of the GS depends on both the frequency detuning between
master and slave (QD) laser and on the injected power. But inside the locking
region there exists therefore a locked solution with two-mode steady-state
dynamics. The transition between the two regions is through a so-called tran-
scritical bifurcation, which marks the threshold for the lasing onset of the ES
mode.

2) In those parameter regions, where the GS dynamics is unlocked, the oscillations
in the GS intensity time trace – and therefore the corresponding oscillations in
the GS occupation caused by optical injection – cause a modulation of the
relaxation time and, consecutively to oscillations in the occupation of the
ES. Such a modulation creates a gain switching mechanism that leads to
the emission of very short, picosecond pulses, from the ES. As shown in
Figure 3.18, the two-mode dynamics can be very complex and depend on
the optical injection parameters. Time traces of the GS and ES intensities
are plotted for different increasing detuning values and for a fixed injection
strength. In all cases the GS dynamics is a regularly modulated output, and the
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Figure 3.18 Two-mode quantum dot laser with optical
injection. Time trace of GS and ES intensities for four in-
creasing negative detuning values �. Panels 1–4 show qual-
itatively different behaviors of the ES dynamics, but in all
cases the modulation of the GS intensity leads to an in-
phase modulation of the ES intensity [65].

ES dynamics is related to this modulation of the GS intensity and occupation.
In panel 1 is shown a case where the ES dynamics is made of packages of
pulses where inside each package the laser exhibits ROs. The period between
PPs corresponds to the modulation period in the GS intensity time trace. In
panel 2 the ES has a more chaotic dynamics, but for a slightly larger negative
detuning, in panel 3, the ES exhibits a very regular pulsating output. Finally,
for a still larger detuning the ES dynamics is a weak modulation in phase with
the time-evolution of the GS intensity; see panel 4.

3.9
Conclusions

To summarize, we have illustrated different examples of semiconductor laser
nonlinear dynamics that can be attributed to mode competition. In Section 3.3
the competition between longitudinal modes in an EEL diode results in different
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correlation properties of the modal dynamics in the presence of a moderately strong
optical feedback (in a dynamical regime called LFF dynamics). In Section 3.4, the
beating between ECMs leads to the generation of fast all-optical self-pulsation,
beyond several tens of gigahertz. Section 3.5 shows the importance of multimode
laser dynamics in the case of an optical feedback from a short EC (time delay
smaller than the laser RO period). The short cavity experiment is realized with
a VCSEL emitting in two polarization modes. In Section 3.6, a new dynamics
is observed in a time-delayed laser system, which results from a bistable mode
hopping in VCSELs. The hopping occurs between orthogonal LP modes and is
driven by noise. The addition of an external noise in this two-mode lasing system
brings the system into so-called CR: the mode-hopping dynamics gets an optimal
regularity at the time scale of the time delay. In Section 3.7, the mode competition
in VCSEL manifests itself in the context of optical injection-induced nonlinear
dynamics. We report on in depth experiments and numerical results specifically
devoted to the role of (two) mode competition in an optically injected laser system.
Finally, Section 3.8 illustrates some recent modeling results on the competition
between excited and GS dynamics in a QD laser diode with optical injection. Fast
pulsing dynamics are observed and motivate additional experiments.

Several other examples of multimode nonlinear laser dynamics are discussed in
the following chapters. Not discussed in this book are also the cases of polarization
and transverse mode chaos in a VCSEL with large current modulation [69, 70], and
recent observations of dynamics with elliptical polarization in a QD VCSEL [71].
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4
Quantum Cascade Laser: An Emerging Technology
Andreas Wacker

Since the realization of semiconductor heterostructures in the early 1970s, the
idea of using optical transitions between subbands for the amplification of light
[1] has been a long-standing goal. Although many groups worked actively on this
topic, see, for example, [2], the first lasing structure was established finally in 1994
at AT&T Bell Laboratories [3]. As discussed in detail below, one of the central ideas
was the repetition of several identical active regions, where light amplification takes
place, and thus, the new device was called Quantum Cascade Laser (QCL). The
first designs emitted radiation in the infrared (IR) range of the optical spectrum
with wavelengths around 3.4−24 μm [4, 5] (corresponding to frequencies of 88 and
12.5 THz). Here, the optical phonon frequency (7–12 THz for typical (In/Ga/Al)As
semiconductors) sets a lower bound for such IR-QCLs because of the presence of
the Reststrahlen band, where no radiation propagates. A detailed compilation of
experimental and technological issues of the first generation of QCLs is given in [6].

In 2002, two major breakthroughs occurred: based on the two-phonon resonance
design, continuous wave (cw) operation at room temperature [7] could be achieved
for IR-QCLs, which sets the stage for commercial applications. Quite astonishing
was the realization of QCLs, which operate below the Reststrahlen band [8] in
the terahertz (THz) region of the optical spectrum. These devices are referred
to as THz-QCLs and constitute a promising technology with a wide variety of
possible applications [9, 10]. Presently, QCL structures have been established in
a wide range of the optical spectrum, covering almost two orders of magnitude
from 1.2 THz (250 μm) [11] to 114 THz (2.63 μm) [12]. Even frequencies below
1 THz can be obtained in a strong magnetic field [13]. Thus, the QCL concept
is extremely versatile and is now considered to be ready for take-off [14] in a
large variety of technological applications covering environmental science, process
control, medical diagnostics, and chemical physics [15]. Following the applications,
aspects of nonlinear dynamics are currently becoming the focus of research [16].

In this chapter, the physics behind this successful device concept has been
outlined. Furthermore, a detailed overview of different design strategies and
theoretical concepts has been presented.

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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4.1
The Essence of QCLs

As outlined below, the defining concept of a QCL is based on the following ideas:

1) The use of the electronic subbands in semiconductor heterostructures as upper
(up) and lower (low) laser levels, see Figure 4.1.

2) Electric pumping by a bias along the growth direction of the heterostructure.
3) The periodic repetition of active elements (as in Figure 4.1) enhances light

amplification and allows to cover the entire waveguide.

Figure 4.2 illustrates the concept of a standard design of an IR-QCL [17]. Here,
each period consists of essentially two parts: (i) an active region, which is designed
to contain a few subbands, namely, the upper laser level (red), the lower laser
level (blue), and the extraction level (green), with appropriate energies for the laser
transition and efficient extraction (ii) an injector region, which removes electrons
from the lowest laser level or the extraction level in one period and guides them
into the upper laser of the next period at the operating bias. Typically, this region
is considered as a kind of superlattice, with high transmission in the miniband
region and low transmission in the minigap [18], thus stopping electrons from
tunneling out of the upper laser level into continuum states.

4.1.1
Semiconductor Heterostructures

Epitaxial growth techniques allow for the realization of semiconductor heterostruc-
tures, where layers of different materials (with similar lattice constant) alternate.
This provides a spatial variation of the conduction band edge in the growth direction

Lower level

Upper level

z

x, y, k

E
ne

rg
y

Figure 4.1 Sketch of the lasing transition
in a semiconductor heterostructure as sug-
gested by Kazarinov and Suris in 1971 [1].
The black line indicates the conduction band
edge of the semiconductor heterostructure
in the presence of an electric field. Here,
the z-axis is the growth direction, and the

structure is translational invariant in the
(x, y) plane. The horizontal lines indicate the
energy of the quantized levels ϕn(z) in the
quantum wells. Adding the plane wave be-
havior ei(kx x+kyy), one obtains the dispersion
of the subbands indicated by the parabolae.
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Figure 4.2 Conduction band profile for a conventional
IR-QCL [17] together with the squares of the wavefunctions
of the most important states. The lasing transition occurs
between discrete levels in the active region, while the carri-
ers are guided from the extraction level through the injector
region to the upper laser level in the next period.

(here the z direction), as shown in Figure 4.1. Similar to the textbook problem in
introductory quantum mechanics, this provides bound states ϕn(z) with level en-
ergies En in the region of the semiconductor with the lower conduction band edge
(called well), and these states are used as upper and lower laser levels. In addition,
there is a plane wave behavior ei(kxx+kyy) in the perpendicular direction with energy
E(k) = �

2(k2
x + k2

y )/2meff , as indicated by the parabolae to be added to En. The use of
heterostructures has two strong advantages compared to other systems. First, the
level energies Eup/low can be widely tuned by the choice of semiconductor material
and layer thickness, which allows realization of devices lasing in an enormous
range of frequencies. Second, the states in the growth plane follow approximately
the same parabolic dispersion with respect to kx, ky. Thus, the transition frequency
does not vary much with k, and the operation is less sensitive to the electron
temperature in contrast to interband quantum-well lasers.1)

As all k values contribute with the same transition frequency, the amplification
of the optical field directly depends on the densities nup and nlow (in units 1 cm−2)
for the upper and lower level, respectively. Fermi’s golden rule with an effective
broadening γ provides the modal gain (in units 1 cm−1) for an optical field of
angular frequency ω with electric field component in z direction

g(ω) = e2|zup,low|2ω(nup − nlow)

2Lzcε0
√

εr

γ

(Eup − Elow − �ω)2 + γ 2/4
, (4.1)

1) Actually, there is some deviation due
to nonparabolicity, which is, however,
usually neglected. On the other hand,

nonparabolicity actually allows for
inversion-less lasers [19, 20], which is not
further discussed here.
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where zup,low is the dipole matrix element between the lasers, and Lz is the effective
width of the waveguide. A derivation is given in Appendix 4.7. Thus, gain is
proportional to the inversion nup − nlow. Furthermore, the matrix element zup,low

should also be optimized for improving gain.
Although all operating QCL structures are based on layered structures, there have

been a few attempts to confine the lateral structure using quantum dots [21, 22].
This reduced dimensionality may provide better performance because of reduction
of final states in scattering processes [23, 24].

4.1.2
Electric Pumping

If an electric field is applied along the growth direction of the structure, the
conduction band edge gets tilted as can be seen in Figures 4.1 and 4.2. At the
designed field of operation, the precise layer structure guides the electrons into
the upper laser level via combinations of tunneling and scattering processes. The
level from which the upper laser level is fed is typically referred to as injector level
(in). While the further propagation at the energy Eup is essentially blocked by a gap
in the energy spectrum of the heterostructure, efficient pathways are provided for
the emptying of the lower level into an extraction level (ex). For an optimal design,

there is thus a current channel in → up
weak→ low → ex → . . . → in (in next period).

Commonly one describes this by rate equations for the electron densities

ṅup = J

e
− nup

τup,ex
− nup

τup,low
and ṅlow = nup

τup,low
− nlow

τlow,ex
. (4.2)

Here, J is the current density feeding the upper lasing level, and τn,m are the
scattering times between levels n and m. (The extraction level may actually stand
for a set of levels all involved in the transport.) In the stationary state, one obtains

nup − nlow = J

e

τup,ex(τup,low − τlow,ex)

τup,low + τup,ex
. (4.3)

Thus, inversion (i.e., nup > nlow) requires that the upper laser level has a long
lifetime τup,low > τlow,ex. Furthermore, the difference nup − nlow increases linearly
with the current. In real structures, this is not entirely the case because of parasitic
current paths not reaching the upper laser level.

4.1.3
Cascading

The intersubband transitions between states with inverted populations provide
local amplifications of the optical field. This field is confined in a waveguide of
lateral dimensions Lz, which is typically about half a wavelength in the hosting
material2), that is, Lz � λ/(2

√
εr), with the vacuum wavelength λ = 2πc/ω and

2) Metal–metal waveguides can actually be
thinner.
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the refractive index
√

εr . Waveguide losses are typically of the order of several
10/cm, and thus laser operation can hardly be achieved by a single intersubband
transition. Thus, one needs several transitions, which can be conveniently achieved
by a cascade of identical structures with length d (called period) filling the entire
waveguide. This provides in the optimal case a factor Lz/d to the modal gain. A
common scale of a single period is about d = 50 nm. In order to have amplification
over the entire thickness of the waveguide, one requires 30 periods in an IR-QCL
[17] (for a vacuum wavelength of 10 μm and an refractive index of 3). Owing to
the larger wavelength, THz-QCLs require a significantly larger number of periods,
where 200 is a typical value.

The periodic repetition of identical elements requires a homogeneous electric
field inside the structure. As it is well known from the Gunn diode and other
nonlinear elements, a homogeneous electric field becomes unstable if there is
a local negative differential conductance (NDC) [25]. In this case, domains with
different electric fields occur, which has also been observed in QCL structures [26].
In order to match the resonance condition in each period, this has to be avoided,
and thus a positive differential conductance (PDC) for each period is required. A
straightforward way to achieve this is the incorporation of a tunneling resonance
TL → TR in the currently path, where the right level has a slightly higher energy
than the left level for the operating bias as shown in Figure 4.3. In order to be
effective, the tunneling transition TL→TR requires

nTL � nTR, (4.4)

as otherwise it has no essential effect on the current flow.
Another central issue is the electron distribution. As the electrons gain energy

with respect to the bottom of the conduction band while moving along the field,
the electron distribution is heated up. This energy has to be removed, as otherwise
the electrons will eventually reach states above the conduction band edge of the
barriers, which are rather delocalized. Electrons can lose energy by transferring
it either to the radiation field, which can play some role in very effective lasers,

Current
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TR

PDC

NDC

Figure 4.3 Sketch of a tunnel transition between a left (TL)
and a right (TR) level. The current shows a distinct peak if
the levels are aligned. (See Section 10.2 of [27] for details.)
With increasing bias, the right level moves down, so that
the displayed level alignment corresponds to a situation with
positive differential conductance.
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or to the phonons in the lattice. Here, the polar scattering at optical phonons is
dominating for III/V semiconductors. Thus the time for transfer through a period
must be significantly smaller than the optical phonon scattering time, which is
typically of the order of 1 ps.

4.2
Different Designs

Based on the concepts addressed in Section 4.1 a variety of QCL designs has been
realized. Their key features and essential differences shall be reviewed in this
section.

4.2.1
Optical Transition and Lifetime of the Upper State

The gain transition is the heart of any QCL design. Equations (4.1) and (4.3) indicate,
that it is advantageous to have a large dipole matrix element zup,low and a long
scattering time τup,low. Both quantities essentially depend on the overlap between
the upper and the lower laser state. As zup,low increases and τup,low decreases with
overlap, a compromise between both needs has to be found. QCL designs with a
high spatial overlap are called vertical [28], whereas the opposite case is referred
to as diagonal. The vertical design allowed for pulsed room temperature operation
for IR-QCLs [29] and is dominating the development of IR-QCLs since then.
Indeed comparing matrix elements for optical and phonon transitions indicates
that vertical transitions are advantageous for lower transition energies [30]. On the
other hand, recent results indicate that for THz-QCLs more diagonal designs can
be of advantage [31–33].

In addition, different designs have been developed, where the upper and lower
laser levels belong to an ensemble of levels. The first example is the interminiband
laser [34], where the active region consists of a short superlattice and the lasing
transitions occur between the different minibands, which was also the design
of the first THz-QCL [8]. A similar concept is the bound to continuum design
[35], where only the lower laser level is part of a continuum of states which shall
facilitate the extraction process. However, other extraction designs such as the
double phonon resonance for IR-QCLs and the resonant phonon extraction for
THz-QCLs (Section 4.2.2) have dominated the further development. Recently, there
is a renewed interest in continuum designs due to the increased tunability of the
lasing wavelength by bias [36].

4.2.2
Effective Extraction from the Lower Laser Level

The first QCL designs were based on three levels in the active region (see also
Figure 4.2), where the extraction level was located about one optical phonon energy
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Figure 4.4 Band diagram of the QCL from 32 with a reso-
nant phonon depopulation design and a diagonal laser tran-
sition. Note that only four levels are involved in the main
operation. The dashed and dash-dotted lines refer to levels
in adjacent periods of the cascade.

below the lower laser level. For this energy separation, intersubband phonon
scattering is particular strong [37], leading to a short scattering time τlow,ex in
Eq. (4.3). As the optical phonon energy is not much larger than the thermal energy
at room temperature, the lower laser level is only emptied to a certain degree, as
long as the carriers are in the extraction level or further levels aligned with it. This
phenomenon is often referred to as thermal backfilling. It can be avoided by adding
a forth level located about one optical phonon energy below the extraction level, so
that extraction occurs via two subsequent phonon emission processes, called double
phonon resonance [38], which allowed for the realization of continuous wave (cw)
room temperature operation [7]. For THz-QCLs, the energy difference between the
upper and the lower laser level is small compared to the optical phonon energy.
Thus, the scattering times τup,ex and τlow,ex become similar for vertical designs. This
problem is solved by emptying the lower laser level by resonant tunneling to an
auxiliary level, which is subsequently emptied by optical phonon scattering. This
resonant phonon depopulation scheme [39] has been proven very successful for the
improvement of THz-QCLs, which quickly reached operation temperatures above
the temperature of liquid nitrogen [40]. Figure 4.4 shows the band diagram for an
optimized design [32] lasing up to 186 K at 3.9 THz.

4.2.3
Injection

Except for interminiband designs, most QCL structures have a well-defined upper
laser level, which has to be fed by the driving current, as assumed in Eq. (4.2). In
most designs, carriers are injected into the upper laser level by resonant tunneling
from the injector level (or possibly several such states as indicated by the miniband
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in Figure 4.2) called tunneling injection. Here, the width of the injector barrier is
of high relevance, as a wide barrier prevents from effective filling, while a thin
barrier broadens the laser level [41, 42]. This tunneling transition also ensures the
PDC of the device, as required for a stable electric field configuration along the
cascade (Section 4.1.3), where we can identify the levels TL = in and TR = up. This
tunneling injection design has, however, two shortcomings. (i) As the tunneling
resonance should be an effective source of PDC, the injector level must exhibit an
occupation at least comparable to the upper laser level, see Eq. (4.4). This restricts
the possible inversion for a given total carrier density. (ii) Tunneling from the
injector to the lower laser level constitutes a second resonance which is a further
source of NDC and thus of particular concern for low lasing frequencies, when it
mixes with the tunneling resonance into the upper laser level. A possible solution
to these issues is the development of scattering injection designs [43, 44], where the
upper laser level is fed from the injector level by a scattering process, that is, these
levels are not aligned. Such structures were recently shown to exhibit improved
temperature performance in the THz region [45–47]. In order to guarantee PDC
and the stability of the electric field distribution along the sample, scattering
injection designs should have a further tunnel resonance TL→TR in the current
path. Frequently, this is a further transition between the extraction level and
the injector of the subsequent period. Alternatively, one can use this tunneling
transition to depopulate the lower laser level. In these extraction controlled designs,
the lower laser level is the carrier reservoir until the design field is reached, where
the lower laser level is efficiently emptied by a tunnel transition and subsequent
scattering events, as suggested in [47]; see also Figure 4.5b.

4.3
Reducing the Number of Levels Involved

The first QCL designs contained a relatively large number of semiconductor layers
per period and involved of the order of 10 levels in the current path through each
period (see, e.g., Figure 4.2). A four-level design was later realized for IR-QCLs
[49], showing that this complexity is not essential. However, the performance of
this structure was not comparable with other designs. This is most likely due to the
need to dissipate a large amount of energy in each period to avoid the continuous
heating of the electron distribution while propagating along the cascade.

The bias per period under operating conditions is given by the energy of the
lasing transition plus the energy difference due to additional scattering processes
in the current path (at least one or two optical phonons). Typically, only a smaller
fraction of this energy gained by the carriers in each period is emitted by radiation,
as scattering transitions between the upper laser level and other levels can never be
entirely avoided. Thus, a large fraction of this energy has to be transferred to lattice
vibrations, mostly by optical phonon scattering processes. Thus, for IR-QCLs, each
electron should be able to emit several optical phonons while transversing one
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Figure 4.5 Band diagrams of the two different three-level
designs using tunneling injection (a) and scattering injection
(b). The designs are taken from [48] and [47], respectively.
Note that each period contains only two wells in both cases.

period, which is facilitated by the presence of many levels involved. This explains
why efficient designs show such a complexity of levels.

For THz-QCLs, however, the bias per period required is only slightly larger
than the optical phonon frequency, and thus, less energy has to be dissipated per
period. Thus, few-level designs are more likely to work and have the essential
advantage of a shorter period, allowing for more active regions in the waveguide
and consequently a larger modal gain. For example, the very successful structure
in Figure 4.4 includes only four levels in the current path, which is given by the
sequence in→ up → low→ ex → in (in next period).

Actually, a further simplification with only three remaining levels is possible if
the extraction and injection levels are identical. This corresponds to the current
path in/ex→ up → low → in/ex (in next period). This allows for two different
designs, either with tunneling injection (Figure 4.5a) or with scattering injection
(Figure 4.5b). Note that both designs include a tunneling transition in the current
path. For the tunneling injection design, this is TL = in/ex and TR = up, while for
scattering injection TL = low and TR = in/ex holds, which is actually an extraction
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controlled design. The design of Figure 4.5a is a working device [48], while
Figure 4.5b is proposed to have a high operating temperature, but this has not been
realized yet. A similar three-level design is presented in [50], which shows lasing
both to tunnel and scattering injection.

Such three-level designs constitute the minimal version for QCLs based on
population inversion. A hypothetical QCL design with two levels per period
requires the current flow up → low→ up (in next period). Now the alignment
condition requires that the tunneling transition is due to TL = low and TR = up.
In order to achieve gain, generally nup > nlow is required.3) This, however, does not
match Eq. (4.4) for a two-level design, which is therefore not expected to work.

4.4
Modeling

The crucial part of any QCL is the achievement of inversion between subbands by
resonant tunneling. In order to limit heating of the electronic distribution, phonon
scattering is an important ingredient for the operation as well. On the other hand,
phonon scattering as well as other scattering processes provide undesirable nonop-
tical transitions between the laser levels and broaden the tunneling transitions.
This shows that the operation of any QCL constitutes an intricate interplay between
quantum effects (tunneling and subbands) and scattering.

Typically the operation of QCLs is modeled by rate equations [54] between the lev-
els of the active regions, while transitions through the injector are taken into account
by phenomenological tunneling rates. The transition rates are evaluated micro-
scopically within Fermi’s golden rule for phonon scattering [55, 56] and partially for
electron–electron scattering [57, 58]. In addition, confined phonon modes [59] and
hot phonon effects [60] have been studied. While rate equations take into account
only the electron density of subbands, Monte-Carlo simulations of the Boltzmann
equation [61, 62] allow for a study of nonequilibrium distributions within the
subbands. Here the importance of electron–electron scattering is debated. Ref-
erence [63] shows that the impact of electron–electron scattering is strong if no
elastic scattering mechanism is taken into account. In contrast [64], elastic impurity
scattering gives stronger effects than electron–electron scattering. If one includes
the injector states in such a simulation, one obtains a self-consistent simulation of
the entire structure [30, 63, 65] within the semiclassical carrier dynamics.

These semiclassical models for the carrier dynamics relate on various
assumptions:

• Quantum mechanical correlations between different states are negligible.
• Broadening effects are of minor importance for the energetic selectivity of the

transitions.
• Different scattering processes can be summed neglecting correlation effects.

3) Alternatively, dispersive gain [51–53] is
possible, which will not be addressed here.
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Two different approaches exist to include such quantum effects: density matrices
and nonequilibrium Green’s functions (NEGF).

Density matrices include the correlations ρnm between different quantum states
n �= m. These are of particular importance for the tunneling through the injection
barrier, where their neglect provides the wrong result that the peak tunnel current
does not drop with the barrier width [66, 67]. In a more phenomenological way, this
can be done on the level of densities [68–70], which is very cost-effective. Taking into
account the k-resolution, the equations for the density matrix ρnm(kx , ky) become
much more involved [63, 67, 71]. Here, it is a well-known problem that unphysical
negative occupations may occur in frequently used approximation schemes; see
[67] for a thorough discussion. A possible solution by using further approximations
is outlined in [72] on the level of densities.

Alternatively, nonequilibrium Green’s functions allow for the energetic resolution
of coherences, which avoids any problems with negative occupations and is also
of particular relevance for the gain spectrum, where corresponding density matrix
calculations are particularly cumbersome [73]. Simulation schemes based on NEGF
have been developed for periodic structures [74–76] based on the simplification
for k-independent self-energies (but keeping the full energy dependence). This
k-dependence is included in the schemes of [77] and [78], where the latter treats
only a single period with an injection from a thermalized contact. A particular
strength of the NEGF technique is the detailed description of the gain spectrum
[79], including the important effect that the decay rates of the different levels do not
just add up to the width of the gain transition [80]. A detailed overview on different
gain features is given in [81].

As an example for the capabilities of NEGF simulations, some results for
the three-level tunneling injection design of [48] are presented in the following.
Figure 4.6a shows the calculated current using the nominal sample parameters
and a roughness with an average height of 1 Å and lateral correlation length of
10 nm. The calculated currents in the peak and the lower plateau agree reasonably
well with the data of [48]. As the NEGF approach of [76, 80] systematically includes
all possible couplings with the alternating field without referring to the rotating
wave approximation, the gain spectrum can be calculated over the entire frequency
range as shown in Figure 4.6b. Note that the gain for ω → 0 correctly approaches
the value

g(ω = 0) = − 1

c
√

εrε0

dj

dF
, (4.5)

where dj/dF is just the slope in the dc current-field relationship at the operation
points marked in Figure 4.6a.

Figure 4.7 displays the distribution of electrons before and after the main current
peak around Fd ≈ 57 mV together with the injector/extraction level (in/ex), the
upper laser level (up), and the lower laser level (low). One can clearly detect the
population inversion between the upper and the lower laser level. The alignment
of the levels in and up causes the current peak, and consequently, the conductance
is negative at 60 mV per period, where the upper laser level is below the injector
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level, compare Figure 4.3. This shift has only minor consequences on the main
gain peak around 20 meV, as shown in Figure 4.6. However, the gain/absorption
is strongly altered in the low-frequency region around 2 meV, where it turns
from absorption at 56 mV to gain at 60 mV, associated with NDC in the static
current field relationship. The second scenario resembles the standard Bloch gain
in superlattices [82]. Furthermore, note that the occupation of the injector and
upper laser level are comparable; thus, less than half of the carriers can occupy the
upper laser level in the PDC region, which is a shortcoming of the injection design
addressed in Section 4.2.3.



4.5 Outlook 103

E
 (

m
eV

)
80

60

40

20

0

−20

−40

−10 403020
z (nm)
100

E
 (

m
eV

)

80

60

40

20

0

−20

−40

−10 403020
z (nm)
100

n(
E

,z
) 

(1
0−1

5
cm

−3
m

eV
−1

)
n(

E
,z

) 
(1

0−1
5

cm
−3

m
eV

−1
)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

up

in

low

ex = in

upin

low

ex = in

56 mv

60 mv

Figure 4.7 Energetically resolved electron density for the
design of [48] as obtained from lesser Green’s function for
77 K at two biases.

It is important to note that both density matrix theory [83] and Green’s function
[76] clearly show that the actual motion of carriers is due to coherences, that
is nondiagonal elements of density matrix ρnm. However, these coherences are
implicitly included in the semiclassical rate equation in a subtile way; for details
see [84]. Thus, in many cases, the semiclassical approach provides similar currents
as quantum kinetic calculations, which lead to an earlier conclusion that coherent
effects are not of relevance [63].

4.5
Outlook

Specific tailoring of semiconductor heterostructures has allowed for the realization
of QCLs covering almost two decades of the optical spectrum. In the IR range, they
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successfully operate at room temperature and are currently becoming the method
of choice for spectroscopic applications. Current research focuses on increased
output power and efficiency, where it recently became possible to transfer 50% of
electrical power into lasing light [85, 86]. Another issue is the improvement of the
tunability in a single device in order to cover several molecular transitions [36].

In contrast, the effective use of THz-QCLs is still hindered by the low operation
temperature. Since the empirical limit kBT � �ω [9] has now been overcome [46],
there is renewed hope for a further improvement of the maximum operation
temperature, allowing for device operation with simple Peltier cooling or even
directly at room temperature.

A further interesting issue is the optical field and its coupling to internal and
external resonators [87]. In this context, phase locking between different transverse
modes due to the optical nonlinearity was observed [88]. The authors state that
quantum cascade lasers are a unique laboratory for studying nonlinear dynamics because
of their high intracavity intensity, strong intersubband optical nonlinearity, and an
unusual combination of relaxation times, suggesting a rich field for further studies
of the general features outlined in Part II of this book.
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4.6
Appendix: Derivation of Eq. (4.1)

Here, the gain resulting from a single intersubband transition shall be calculated.
We consider an electromagnetic field propagating in y direction with the electric
field component

F(r, t) = F0ez cos
(√

εrω

c
y − ωt

)
.

Then Fermi’s golden rule provides the transition rate between the upper and lower
laser level

Rup→low(k) = Rlow→up(k) = 2π

�

∣∣∣∣ eF0zup,low(k)

2

∣∣∣∣
2

δ(Eup − Elow − �ω)
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where the spontaneous emission is neglected. Here, the matrix element is given
by

zup,low(k) = 1
A

∫
d3r ϕ∗

up(z)e−i(kx x+kyy)zϕlow(z)ei(kx x+kyy)

=
∫

dz ϕ∗
up(z)zϕlow(z) = zup,low

where A is the normalization area. Summing over all k values and taking into
account the occupations fn(k) provides the total number of photons coherently
emitted per time via stimulated processes.

Ṅphoton =
2π

�

∣∣∣∣eF0zup,low

2

∣∣∣∣
2

δ(Eup − Elow − �ω)︸ ︷︷ ︸
→ 1

2π
γ

(Eup−Elow−�ω)2+γ 2/4

2(for spin)
∑

k

[
fup(k) − flow(k)

]
︸ ︷︷ ︸

=A(nup−nlow)

(4.6)

where the δ-function was replaced by a Lorentzian taking into account lifetime
broadening in a phenomenological way. These photons add the power Pgain =
Ṅphoton�ω to the electromagnetic field.

The Poynting vector provides the average energy flux density

I(y) = 1

2
F2

0
√

εrε0c . (4.7)

We consider a cube of dimensions LxLyLz in which the electromagnetic wave
propagates. Owing to the power transferred to the electromagnetic field, the flux
through the facets differs as [I(Ly) − I(0)]LxLz = Pgain, which is just the continuity
equation. Now the gain is given by the relative change of intensity per length
resulting from the stimulated transitions. Thus we have

g = I(Ly) − I(0)

I(0)Ly
= Pgain

I(0)ALz
(4.8)

where we used A = LxLy as the area of the heterostructure layer. Inserting Pgain =
Ṅphoton�ω and applying Eqs. (4.6) and (4.7) provides Eq. (4.1), which is the desired
result.
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5
Controlling Charge Domain Dynamics in Superlattices
Mark T. Greenaway, Alexander G. Balanov, and T. Mark Fromhold

In this chapter, we show how an applied magnetic field can transform the structure
and THz dynamics of charge domains in a biased semiconductor superlattice. It
has been shown that the electrical current through a superlattice can be modulated
by using an applied bias voltage and a tilted magnetic field to switch on and
off stochastic web patterns, which thread the electron phase space and act as a
network of conduction channels through which the electrons can propagate in real
space [1–12]. When the web is switched on, the electrons undergo chaotic diffusive
motion along its filaments, thereby producing a sharp increase in the measured
and calculated current flow. Delocalization of the electron paths produces a series
of strong resonant peaks in the electron drift velocity versus electric field curves.
Self-consistent, static calculations of the current in the superlattice agree well with
the experimental data and reveal strong resonant features originating from the
sudden delocalization of the stochastic single-electron paths. In this chapter, we
use the drift velocity characteristics to make dynamic self-consistent calculations
of the self-sustained current oscillations generated in the superlattice. We find that
the extra resonant features in the drift velocity–field curve dramatically affect the
collective electron behavior by inducing multiple propagating charge domains and
high-frequency current oscillations, whose amplitude and frequency are greatly
increased by the tilted field.

In semiconductor physics, chaotic electron transport has been explored using a
variety of two-dimensional billiard structures [13–22], antidot arrays [13, 14, 23–25],
superlattices [26–29], and resonant tunneling diodes containing a wide quantum
well enclosed by two tunnel barriers [13, 30–49].

Despite the diversity of experimental studies of quantum chaos in semiconductor
nanostructures, they all involve systems in which the transition to chaos occurs by
the gradual and progressive destruction of stable orbits in response to an increasing
perturbation. This gradual onset of chaos occurs for all systems used in previous
quantum chaos experiments, which obey the KAM theorem [1, 3, 13].

However, by connecting a series of quantum wells together to form a super-
lattice, it is possible to create a much rarer type of ‘‘weak’’ chaos – studied by
Zaslavsky and coworkers [50–57] for driven harmonic oscillator systems that do
not obey the KAM theorem – which is characterized by abrupt delocalization

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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of the classical paths. The theory of such ‘‘non-KAM’’ chaos is of great interest
because of the diverse applications in, for example, plasma physics, tokamak
fusion, turbulent fluid dynamics, ion traps, quasicrystals, and ultracold atoms in
optical lattices [9, 50–65]. However, it has proven difficult to realize and explore
the rich phase space structure of a driven harmonic oscillator in experiments. In
the next section, we show that non-KAM chaos can have a fundamental effect not
only on the single-electron dynamics in superlattices but also on the collective
dynamics.

The collective dynamics of electrons in superlattices, and the resulting fields
and charge densities, have been studied extensively and a number of interesting
phenomena have been observed and studied [1–12, 26–29, 66–83]. For a complete
review of these models, refer to [67, 82, 84]. In [3], the authors used a model to
investigate the effect of a tilted magnetic field, which calculated the static (unstable)
solution for the field and charge profiles and found good correspondence with
the experimental I(V) curves, confirming the non-KAM-chaos-induced electron
dynamics. In this chapter, we consider a dynamic model of charge and field
domains for superlattices in tilted magnetic fields, based closely on that developed
by E. Schöll and coworkers [67, 84, 85], and predict that the magnetic field not
only changes the shape of the I(V) curve but also significantly modifies the charge
dynamics.

5.1
Model of Charge Domain Dynamics

To investigate the collective behavior of the electrons, the current continuity and
Poisson equations were solved self-consistently throughout the device by adapting
a model used previously to describe interwell transitions in superlattices [66, 67, 78]
to the case of miniband transport. This allows us to investigate how the electron
density, n(x, t), and electric field, F(x, t), in the superlattice vary spatially and
temporally.

Figure 5.1a shows a schematic diagram of the GaAs/AlAs/InAs superlattice used
in recent experiments [3, 7]. Together, 14 unit cells, each of width d = 8.3 nm,
form the superlattice region of length L, which is enclosed by GaAs ohmic
emitter and collector contacts, of length l, on the left- and right-hand edges,
respectively. Electrons are confined to the first miniband with kinetic energy
versus wave number, kx , dispersion relation E(kx) = �[1 − cos(kxd)]/2, where the
miniband width � = 19.1 meV [3]. Semiclassical miniband transport corresponds
to modeling the superlattice as a continuum (depicted in Figure 5.1b), where
electrons move freely (with the GaAs effective mass m∗ = 0.067me) in the y and z
directions but have dispersion E(kx), along the superlattice axis.

In our calculations, the superlattice region of the device was discretized into
N = 480 layers with width �x = L/N = 0.24 nm, which, after analysis of the
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results, was shown to be small enough to approximate a continuum1). The volume
electron density of electrons in the mth layer is nm and the field values at the left-
and right-hand edge of the layer (see the vertical lines in Figure 5.1b) are Fm and
Fm+1, respectively.

The dynamical equation that describes the evolution of the charge density in
each layer is given by the following current continuity equation:

e�x
dnm

dt
= Jm−1 − Jm m = 1, . . . , N (5.1)

where e > 0 is the electron charge and Jm is the current density (C s−1 m−2) of
electrons moving from the mth into the m + 1th layer. This equation is integrated
numerically using a fourth-order Runge–Kutta scheme [86]. Note that in this

1) The model is considered to approximate
a continuum when the field in the device
varies on a spatial scale � �x.
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analysis, diffusion of electrons is neglected, as in previous models [3, 66], since for
low temperature systems with bias applied, its effect is small compared to electron
drift. Jm depends on the local drift velocity of electrons in layer m, vm

d , and is given
by

Jm = enmvm
d , m = 1, . . . , N. (5.2)

Thus, Jm depends directly on the single-electron orbits and, therefore, we can
expect that the features of the single-electron transport will have an effect on the
collective electron dynamics2). The Esaki–Tsu approach was used to calculate the
drift velocity for a field corresponding to the average field in layer m, Fm, so that

vm
d = vd

(
Fm, B, θ

)
(5.3)

where

vd

(
Fm, B, θ

)
=

∑ δ

τ

∫ ∞

0
vx

(
Fm, B, θ , t

)
e−t/τ dt. (5.4)

In this equation, the velocity of the electron, vx, is found by calculating semiclassical
trajectories for a miniband electron with an applied magnetic field, B, tilted at an
angle θ to the superlattice x-axis (Figure 5.1a), and an electric field equal to Fm

[1, 3, 10]. The effective electron-scattering time is equal to

τ = τi

√
τe

τi + τe
= 250 fs (5.5)

and is determined from the elastic (interface roughness) scattering time τe = 29 fs
and the inelastic (phonon) scattering time τi = 2.1 ps [3, 7]. Since we are using this
expression for τ , the drift velocity is modified by the coefficient, δ = τ/τi [71].

In these simulations, we average the drift velocity over ∼2500 initial energies
determined by the average temperature, T , of the electrons. For a lattice temperature
of 4 K, we consider a range of initial electron energies up to 10 meV. This energy
consists of a thermal component kBT ∼ 0.4 meV (where kB is the Boltzmann’s
constant) and also a contribution due to voltage heating, that is, kinetic energy
imparted by the electric field, ≈ �SL/2 ∼ 10 meV. The initial conditions were
linearly spaced over a ‘‘sphere’’ of initial momenta in px , qy, and pz with a radius
equal to the defined maximum energy of the system. This method of defining the
thermal distribution was explored in [12] and has shown good correspondence with
experimental results [3, 12].

When the drift–diffusion model is considered, in the case of a weakly coupled
superlattice, the electron density and electric fields are discrete variables specified
within, and at the edges of, each well. However, in a strongly coupled superlattice
where electron dynamics is governed by miniband transport, the model of charge

2) Note that the scattering time, τ , is less than
the characteristic time scale of the domain

dynamics, allowing us to assign a local drift
velocity.
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transport must approximate a continuum3). In this model, it is assumed, therefore,
that the field an electron experiences at a particular point must be an average of
the field values surrounding it. In particular, to create a smooth field profile, the
field was averaged over a distance of one superlattice period4). Therefore, we use
the average field at point x, F(x), which is defined as

F(x) = 1

d

∫ d/2

−d/2
F(x)dx. (5.6)

After discretization, this average field is given by

Fm = 1
NFA

∑m+NFA/2

m−NFA/2
Fm (5.7)

where NFA = d/�x is the number of discretization layers in one quantum well.
In each layer, Fm obeys the discretized version of Poisson’s equation

Fm+1 = e�x

ε0εr
(nm − nD) + Fm m = 1, . . . , N (5.8)

where ε0 = 8.85 × 10−12 F m−1 and εr = 12.5 are, respectively, the absolute and
relative permittivities, and nD = 3 × 1022 m−3 is the n-type doping density in the
superlattice layers.

To properly simulate the charge domain dynamics of a system, it is important to
consider the boundary conditions of the system, that is, the physical properties of
the contact regions. There have been many theoretical works that investigate the
effect of the boundary conditions on the dynamics of the charge in the superlattice
[74, 75]. The choice of the boundary conditions has been shown to induce stationary
charge domains, and also moving charge domains that give rise to both periodic
[87] and chaotic currents [75]. In this investigation, however, we wish to compare
these numerical results with experimental data. Therefore, the contact regions are
modeled using a realistic picture of the contact doping profiles in order to obtain
good correspondence between theory and experiment.

Ohmic boundary conditions [67] are used to determine the current injected into
the superlattice region from the emitter, which is

J0 = σF1 (5.9)

where σ (	−1 m−1) is the electrical conductivity given by Fromhold et al. [3] and
Hardwick [12],

σ = n0e2τc

m∗ (5.10)

where n0 and τc are, respectively, the doping density and electron-scattering time in
the contact regions. The voltage applied to the system is the global constraint. It is

3) Equivalent to models describing charge in
Gunn diodes [84].

4) Which has physical sense if we consider
the wavefunction of the electron to have its
maximum across a single quantum well.



116 5 Controlling Charge Domain Dynamics in Superlattices

determined from the sum of the potential dropped across each discrete superlattice
layer and across the contact regions. In fact, most of the field is dropped across the
contact regions and any external resistance (e.g., measuring equipment) that is in
series with the superlattice, so these regions must be considered rigorously. In the
contact, just to the left of the superlattice layers, we assume that there is a charge
accumulation layer. Applying Gauss’s law to this layer we find that

F1 − F0 = enL

ε0εr
(5.11)

where nL is the areal density of electrons in the accumulation layer, which is
modeled as a delta function sheet of negative charge at distance l − s from the
left-hand edge of the device, and F0 is the field at the left-hand edge of the device.
The electric field, FN+1, at the right-hand edge of the superlattice region is screened
by a depletion layer of length q and electron density n0, which ensures that the
fields at the left- and right-hand edge of the device are equal, meaning that

F0 = FN+1 − en0q

ε0εr
. (5.12)

The potential drop across the collector contact is found by spatial integration of the
electric field

VC =
∫ q

0
F(x)dx =

∫ q

0

(
FN+1 − en0x

ε0εr

)
dx.

Therefore, the voltage dropped across the depletion region is

VC = qFN+1 − en0q2

2ε0εr
. (5.13)

The voltage drop across the entire device, V , can be found by assuming that the
field in the remaining sections of the superlattice is constant across each layer so
that

V = F0(l − s) + F0(l − q) + F1s + VC

+�x

2

N∑
m=1

(Fm + Fm+1) + σF0ARext (5.14)

where Rext is the resistance that describes the physical contacts to the device and the
remaining circuit of the experimental system, and A is the cross-sectional area of
the device. In this system of equations, the applied voltage V is the global constraint
that determines the dynamics of each nm and Fm.

We define the global current density, J(t), in the layers of the superlattice region
as [67]

J(t) = 1

(N + 1)

N∑
m=0

Jm. (5.15)

The corresponding current is then

I(t) = J(t)A. (5.16)
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The system of equations (Eqs. (5.1)–(5.16)) can now be solved self-consistently
(ensuring that the voltage dropped across the device is constant and equal to the
applied voltage) to obtain n(x, t), F(x, t) and, therefore, I(t).

It should be noted here that there are three assumptions made for this model:

• For a given voltage across the device, the electric field is constant in the ohmic
contacts and is equal to F0, which corresponds to the device remaining overall
neutral.

• The width of the superlattice sections, �x, is small enough that the changes in
electric field and charge density in the sections are negligible.

• Rigorously, the proportion of ionized donors will depend exponentially on the
local electric field [3]. However, if this is applied for collective dynamics in a
magnetic field, the model is numerically unstable. Therefore, here we assume
that all donors are ionized.

5.2
Results

In this section, we show the electron dynamics for the GaAs/AlAs/InAs superlattice
with lattice period d = 8.3 nm and miniband width � = 19.1 meV, as described in
the previous section. We consider a semiclassical formulation for electrons in the
first miniband of the superlattice, to obtain the electron velocity along the x-axis, vx,
in the equation for drift velocity (5.4). The drift velocity was calculated by averaging
over 2500 electron trajectories corresponding to a lattice temperature of 4 K (see
previous section). The experimentally obtained (and verified [3, 12]) parameters for
this superlattice are summarized in the following table.

Parameter Symbol Value

Mean doping density of layers nD 3 × 1022 m−3

Effective scattering time τ 250 fs
Drift velocity correction δ 1/8.5
External resistance Rext 17 	

Contact length l 500 Å
Contact doping density n0 1.0 × 1023 m−3

Contact scattering time τc 90 fs
Position of accumulation layer s 150 Å
Diameter of superlattice messa DSL 25 μm

These parameters are used in the system of equations derived in Section 5.1
to calculate the charge domain dynamics for superlattice. In the simulations,
we solved equations (5.1)–(5.16) self-consistently, solving the current continuity
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equation, Eq. (5.1), using the fourth-order Runge–Kutta method [86]. Initially, the
density of electrons in the layers is equal to the doping density (nm(t = 0) = nD)
and the fields in the layers are given a nominal value to avoid divisions by 0
(Fm(t = 0) = 1 × 103 V m−1). In this analysis, we only consider the case when
B = 15 T. The results are presented in the following sections.

5.2.1
Drift Velocity Characteristics for θ = 0◦, 25◦, and 40◦

The formulation of the drift model, and Eq. (5.2), imply that the structure and
dynamics of the charge domains in the superlattice will strongly depend on the drift
velocity–field characteristics. Therefore, in Figure 5.2 we show how the drift velocity
varies with r = ωB/ω|| ∝ F, where ωB = eFd/� is the Bloch oscillation frequency and
ω|| = eB cos θ/m∗ is the cyclotron frequency corresponding to the x component of B.

When θ = 0◦ (lower curve in Figure 5.2), the cyclotron motion in the y − z plane
is separable from the Bloch motion along the x-axis. Consequently, we see only
one maximum in the drift velocity curve (dashed line labeled ET) when r = 1/ω||τ .
Beyond the ‘‘Esaki–Tsu’’ peak, drift velocity is suppressed as electrons are able to
perform more Bloch oscillations [67, 69, 88].

When θ 	= 0, there is strong coupling between the Bloch and cyclotron motion,
which drives the electron trajectories chaotic [1, 3]. When r is irrational, the electron
orbits remain localized. However, when r is an integer, electrons map out intricate
‘‘stochastic-web’’ and their orbits become unbounded. This abrupt delocalization
of the orbit creates sharp resonant peaks in the electron’s drift velocity–field
characteristic. Therefore, when θ = 25◦ (middle curve in Figure 5.2), in addition to
the Esaki–Tsu peak, there is a r = 1 resonance (dashed line in Figure 5.2 labeled
1.0) and by increasing θ to 40◦ (top curve in Figure 5.2) we also find that the
r = 2 resonance becomes apparent (dashed line in Figure 5.2 labeled 2.0). For r
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Figure 5.2 vd versus r ∝ F curves calculated for B = 15 T
with (from bottom to top) θ = 0, 25◦ and 40◦. For clarity,
curves are offset vertically by 103 ms−1. The dashed colored
lines show the positions of the Esaki-Tsu (ET) peak, the
r = 0.5 peak, the r = 1 peak and the r = 2 peak.
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values that are rational but not integer, the electron orbits are finite, but exhibit
some resonant extension along x. This causes the small additional peaks visible at
r = 0.5 in the middle and top curves of Figure 5.2.

In the following sections, it will be shown that, via the resonant features in the
drift velocity curves, the single-electron chaotic trajectories can drastically alter the
collective electron dynamics.

5.2.2
Current–Voltage Characteristics for θ = 0◦, 25◦, and 40◦

In this section, we consider the I(V) curves for the superlattice. Generally, following
the initial transient behavior, the current–time characteristics reach a constant
value or perform self-sustained oscillations between the minimum and maximum
current, Imin and Imax, respectively. The behavior of the current oscillations depends
strongly on V , B, and θ . Figure 5.3 shows the current–voltage characteristics for
values of θ = 0◦, 25◦, and 40◦ when B = 15 T, offset for clarity. The plot shows that
for all values of θ , the current is single valued at low V and then at some critical
voltage, Vc, the current becomes double valued (the upper line showing Imax and
the lower line Imin), denoted by the shaded region in the plot. At low voltages,
the current–voltage curve is approximately linear and has a stationary solution,
showing characteristics similar to bulk semiconductor material. This ohmic part of
the I(V) curve corresponds to the approximately linear region in the drift velocity
characteristic (Figure 5.2). At the critical value, Vc (the value of which depends on
B and θ ), the stationary state loses its stability via Hopf bifurcation and starts to
oscillate between Imax and Imin, corresponding to the nonlinear region of the drift
velocity characteristic.

With further increase in V , the size of the oscillations Ia = Imax−Imin and,
consequently, their power grows for all θ (in the range of voltages presented here).
However, as clearly shown in Figure 5.3, the presence of a tilted magnetic field
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Figure 5.3 I(V) characteristics calculated for (from bottom
to top) θ = 0◦, 25◦, and 40◦. For clarity, curves are verti-
cally offset by 15 mA. Current oscillations occur within the
shaded regions, whose upper (lower) bounds are Imax(V)
[Imin(V)]. Dashed curves show I values corresponding to the
unstable steady state solution of Eq. (5.1).
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(θ 	= 0) can also increase the amplitude of the current oscillations, for example,
in the voltage range 0 – 1 V Ia ≈ 18 mA when θ = 0◦ compared to ≈ 24 mA for
θ = 25◦, and ≈ 33 mA for θ = 40◦.

The dashed curves in Figure 5.3 show the static solution to the dynamical
equations obtained by setting Eq. (5.1) to 0. Such static solutions have been shown
previously to closely correspond to experimental DC I(V) measurements [3]. For
low voltages (in the stationary regime), the full time-dependent solution of the
equations of motion correspond exactly to the static solutions. When θ = 40◦,
features corresponding to the r = 1 resonance are visible between 200 mV and
400 mV. In the current oscillation regime, the static current effectively bisects the
extremal values, Imin and Imax, of the dynamical solution, showing that even when
we enter the oscillating regime the two solutions are still broadly consistent with
each other, also suggesting good correspondence with experimental results.

5.2.3
I(t) Curves for θ = 0◦, 25◦, and 40◦

In this section, the I(t) curves and how they vary with V , B, and θ are considered in
detail. We consider θ values of 0◦, 25◦, and 40◦ because the drift velocity curves have
a simple form with, respectively, only 1, 2, and 3 resonant features (Figure 5.2).
The traces shown in the left-hand column of Figure 5.4 are the I(t) characteristics
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for θ = 0◦ when V = 290 mV and 490 mV. Figure 5.4a is for V = 290 mV, a value
close to the critical voltage ≈ Vc. The I(t) curve exhibits periodic oscillations, whose
frequency ∼37 GHz corresponds to the single dominant peak in the Fourier power
spectrum shown in Figure 5.4b. The sparsity of the power spectrum confirms
the periodicity of the current oscillations at the Hopf bifurcation. Increasing V
to 490 mV has little qualitative effect on the shape of the current oscillations
(Figure 5.4c). However, the fundamental frequency of the oscillations falls to
∼12 GHz. In addition, the peaks in I(t) sharpen and also increase in amplitude.
These effects combine to strengthen the higher frequency harmonics in the Fourier
power spectrum (Figure 5.4d).

The plots in Figure 5.5 show the I(t) curves and comparative Fourier power
spectra when θ = 25◦ for different V values. The I(t) curve and frequency spectrum
calculated for θ = 25◦ and V = 290 mV ≈ Vc (Figure 5.5a,b) are very similar to those
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for θ = 0◦ (Figure 5.4a,b). However, we find in Figure 5.5c that when V increases
to 490 mV, the current–time characteristics for θ = 25◦ differ markedly from
those for θ = 0◦ (Figure 5.5c). Comparison of the figures reveals that, in particular,
tilting B almost doubles the fundamental frequency (compare Figures 5.4d
and 5.5d) and also introduces new features in I(t) (arrowed in Figure 5.5c), which
are absent when θ = 0◦. These features originate from the r = 1 resonance in the
drift velocity curve, as explained in the next section. Compared with the case when
θ = 0◦, the arrowed features in the I(t) curve strongly enhance the high-frequency
components in the Fourier power spectrum: see Figure 5.5d, which reveals
a dominant third harmonic at 54 GHz and also strengthened harmonics for
frequencies > 0.2 THz. Increasing V further to 690 mV (Figure 5.5e) induces
stronger resonant features in the I(t) curve and also strengthens the high-frequency
components of the spectra (Figure 5.5f ).

Increasing θ to 40◦, we find that when V = 540 mV ≈ Vc the shape of the
I(t) curve (Figure 5.6a) and the Fourier power spectrum (Figure 5.6b), which is
dominated by the fundamental peak, do not significantly alter from the case when
θ = 0◦ and 25◦. However, the frequency of the fundamental peak does increase
substantially to 56 GHz compared to 37 GHz and 34 GHz when V ≈ Vc for
θ = 0◦ and θ = 25◦, respectively. In contrast, increasing the voltage to V = 610
mV when θ = 40◦ (Figure 5.6c) induces complex I(t) fluctuations that are both
stronger and richer than for comparable voltages at θ = 0◦ (see Figure 5.4c) and
θ = 25◦ (see, Figure 5.5c). Consequently, the high-frequency peaks in the Fourier
power spectrum (Figure 5.6d) are further enhanced, with the fifth harmonic at
92 GHz being the strongest. Increasing V to 740 mV (Figure 5.6e), we find a
similar I(t) plot to when V = 610 mV. However, in the Fourier power spectrum
(Figure 5.6f ), the fundamental frequency is decreased compared to when V = 610
mV, consistent with other θ considered in this section. Note that there is also no
significant enhancement of the high-frequency components seen after increasing
V from 490 mV to 690 mV when θ = 25◦ (compare Figure 5.5d and f ). This
suggests that the mechanism of frequency enhancement is complex. The general
dependence of θ and V on frequency will be considered in Section 5.2.6.

5.2.4
Charge Dynamics for θ = 0◦, 25◦, and 40◦

To understand how I(t) varies with V and θ , in this section we consider how these
parameters affect the underlying spatiotemporal electron charge dynamics. The
charge dynamics of the system depend strongly on the drift velocity characteristics
of electrons in the system (Figure 5.2).

The gray-scale plot in Figure 5.7a shows nm calculated versus t and x for
θ = 0◦ and V = 290 mV ≈ Vc. The plot in Figure 5.7b shows the corresponding
three-dimensional visualization of the natural log of the charge density. These
figures show that for any given x, the local charge density oscillates periodically as
a function of t. This is due to the negative differential velocity in the corresponding
vd(F) curve (see lower plot in Figure 5.2) as we now explain.
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To demonstrate the influence of the negative differential velocity region, the
dashed curve in Figure 5.7a shows the (t, x) locus along which F is fixed at the
value corresponding to the ET peak in the lower curve of Figure 5.2. As x passes
beyond this locus, the electrons, because of the negative differential velocity, slow,
thereby increasing the local values of both nm and Fm. This further decreases vd and,
thereby, increases nm, making the electrons accumulate in a charge domain (shown
light gray in Figure 5.7a and as a large peak in the n(x, t) surface in Figure 5.7b).
Note that the condition for forming the charge domain requires electrons to be in
the negative differential velocity regime throughout a sufficiently extended region
of the superlattice and also a large enough injection current to ‘‘seed’’ a charge
domain [66, 67, 74, 89].
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Figure 5.7 Gray scale (left-hand column) and surface plots
(right-hand column) of nm(t, x) calculated for θ = 0◦. (a,b)
are for V = 290 mV and (c,d) are for V = 490 mV. In (a)
and (c), charge densities > 1023 m−3 appear white. Dashed
curves are loci of constant F values corresponding to the
Esaki–Tsu (ET) drift velocity peak (see Figure 5.2).

As the domain propagates through the superlattice, it strengthens as the dif-
ference in drift velocity between the low- and high-field regions increases. Also,
because of the resulting local increase in field in the high-field region and the
corresponding reduction in drift velocity, the domain slows (both effects are clearly
shown in Figure 5.7a,b).

When the domain approaches the collector (x = L), the high-field region imme-
diately beyond the domain narrows. Consequently, to keep V constant, the electric
field in that region increases, which requires the charge within the domain to also in-
crease. When this domain reaches the collector contact, it therefore produces a sharp
peak in I(t) (Figure 5.4). Immediately, a new charge domain forms near the emitter,
because of an increase in field at the left-hand edge of the superlattice, and the propa-
gation process repeats, thereby producing self-sustained I(t) oscillations [67, 90, 91].

For larger V , (see Figure 5.7c,d when V = 490 mV) similar domain dynamics
occur. But now there is a higher mean field in the layers of the superlattice.
Consequently, the Esaki–Tsu locus (dashed line in Figure 5.7c) is closer to the
emitter compared to when V = 290 mV. As a result, the charge domain forms
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closer to the emitter and, as t increases, traverses the entire superlattice. Increasing
V also increases the difference between the field values in the high- and low-field
regions. This requires more charge to accumulate in the domain, which raises the
amplitude of the I(t) oscillations and, since vd falls at higher fields, decreases the
frequency of the oscillations (see I(t) curve in Figure 5.4c).

When V = 290 mV ≈ Vc, increasing θ from 0◦ (Figure 5.7a) to 25◦ (Figure 5.8a)
produces little qualitative change in the charge domain dynamics. This is because
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Figure 5.8 Gray scale (left-hand column)
and surface plots (right-hand column) of
nm(t, x) calculated for θ = 25◦. In (a,b) V =
290 mV, (c,d) V = 490 mV, and (e,f) V =
690 mV. Charge densities > 1023 m−3 appear

white in (a–c). Dashed, labeled, curves are
loci of constant F values corresponding, re-
spectively, to the Esaki-Tsu (ET) and r = 1
drift velocity peaks (see Figure 5.2).
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V is low enough to ensure that r < 1 throughout the superlattice: a regime where
the vd(r) curves for θ = 25◦ and θ = 0◦ have similar shapes (compare the bottom
two curves in Figure 5.2).

This picture changes qualitatively when V and, consequently, some Fm values
become high enough to ensure that, locally, r � 1. Figure 5.8c,d illustrates this for
V = 490 mV and θ = 25◦. The dashed, labeled curves in Figure 5.8c show the (t, x)
loci along which F equals the values corresponding, respectively, to the leftmost
Esaki–Tsu and r = 1 vd peaks in Figure 5.2. When t ≈ 25 ps, negative differential
velocity associated with the Esaki–Tsu peak creates a high-density charge domain
for x just beyond the ET locus, as in the low-voltage case. However, when t increases
to ≈50 ps, a second charge accumulation region appears above the r = 1 locus.
This domain originates from the negative differential velocity region just beyond
the r = 1 drift velocity peak. Its appearance produces an additional peak, labeled
‘‘r = 1,’’ in the I(t) trace in Figure 5.5c. The two charge domains merge when t ≈
65 ps, thereby inducing an additional peak in I(t), labeled ‘‘Merger’’ in Figure 5.5c.
After merger, the charge within the single domain is almost twice that for θ = 0◦.
In addition, the presence of the large r = 1 vd peak increases the mean electron
drift velocity compared with θ = 0◦, thereby also raising the domain propagation
speed. These two factors increase both the frequency and amplitude of the I(t)
oscillations (compare Figures 5.4c and 5.5c). The appearance of the extra ‘‘Merger’’
peak in I(t) further strengthens the high-frequency harmonics in the Fourier power
spectrum (compare Figures 5.4d and 5.5d).

Increasing V to 690 mV produces higher fields in the superlattice, which reduces
the spatial distance between the (t, x) loci corresponding to the Esaki–Tsu and
r = 1 drift velocity peaks (Figure 5.8e). Therefore, the charge domain associated
with the r = 1 peak is generated closer to the emitter (when x/L ≈ 0.25) and
thus closer, both spatially and temporally, to the generation of the ‘‘Esaki–Tsu’’
domain. In addition, the charge domain grows much quicker than for lower
voltages (compare Figure 5.8d and 5.8f ). The combination of these factors causes
the r = 1 and Merger peaks in the I(t) trace for V = 690 mV (see arrowed peaks
in Figure 5.5e) to occur at lower t and also be much sharper than when V = 490
mV (see arrowed peaks in Figure 5.5c). In turn, this makes the high-frequency
components in the Fourier power spectra stronger for V = 690 mV than for 490
mV (compare Figure 5.5d and 5.5f ).

Note that higher voltages do not necessarily achieve higher frequency Fourier
components. In fact, as the system approaches V ≈ 1 V, the effect of the r = 1 vd

peak on the charge density profile, and thus the I(t) curve, is negated because the
r = 1 domain occurs closer to the Esaki–Tsu domain.

Increasing θ to 40◦ further enriches the charge domain patterns (see Figure 5.9.
Now the r = 0.5, 1, and 2 drift velocity resonances are stronger (see upper curve
in Figure 5.2) and occur for smaller F, meaning that their effect on the domain
dynamics is apparent even for V very close to Vc. Figure 5.9a is the charge density
plot when V = 540 mV ≈ Vc for θ = 40◦. It reveals charge domains near the
dashed, labeled, loci along which F coincides, with the Esaki–Tsu, r = 0.5, and
r = 1 vd peaks. It is interesting to note that the r = 0.5 locus effectively splits the
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Figure 5.9 Gray scale (left-hand column)
and surface plots (right-hand column) of
nm(t, x) calculated for θ = 40◦. In (a,b)
V = 540 mV, (c,d) V = 610 mV, and (e,f)
V = 740 mV. Charge densities > 1023 m−3

appear white in (a–c). Dashed, labeled,
curves are loci of constant F values corre-
sponding to the Esaki-Tsu (ET) and r = 0.5,
r = 1, and r = 2 drift velocity peaks (see
Figure 5.2).

domain induced by the Esaki–Tsu negative differential velocity (see r = 0.5 curve
in Figure 5.9a), which clearly demonstrates the effect of the multiple drift velocity
peaks on the charge domain dynamics. The shape of these domains is clearly
shown in the three-dimensional plot in Figure 5.9b.

In the left-hand region of the superlattice, between the left-hand quantum well
and the charge domain, the local field lies in the region of negative differential
velocity, where r < 1 in the vd curve. As x increases, the local field increases and
enters the region of positive differential velocity. This stops the domain progressing
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further through the superlattice. For x > 2L/3, the local fields lie within the r > 1
region of negative differential velocity and a second domain is formed. The
coexistence, and in-phase oscillation, of these multiple domains doubles both the
amplitude and frequency of the I(t) oscillations (see Figure 5.6a) in the V ≈ Vc

regime compared to when θ = 0◦ (see Figure 5.4a) and θ = 25◦ (see Figure 5.5a).
When V reaches 610 mV (Figure 5.9c,d), a new domain associated with the r = 2

resonance (see locus) appears. When t = 40 ps, the domains with r = 0.5, 1, and
2 resonant peaks all merge. At this voltage, the various domains produce multiple
peaks in I(t), as shown in Figure 5.6c where the labels mark peaks arising from the
formation of the ET, r = 0.5, 1, and 2 domains and their eventual merger, resulting
in strong high-frequency components in the power spectrum (Figure 5.6d).

Increasing the voltage to 740 mV (Figure 5.9e,f ), causes the domains to bunch.
This ‘‘blurs’’ the shape of the I(t) curve (Figure 5.6e), thereby reducing the
high-frequency components in the power spectrum (Figure 5.6f ).

5.2.5
Stability and Power of I(t) Oscillations for 0◦

< θ < 90◦

In this section, we consider how the stability, strength, and frequency of the current
oscillations change over a wide range of θ and V .

Figure 5.10 is a gray scale map showing the variation of Ia = Imax−Imin for a
range of V up to 1V and for 0◦

< θ < 90◦. The plot effectively maps the boundary
between low V regimes (left-hand white area), where the current does not oscillate,
and high V regimes where oscillations do occur. The scale gives a measure of the
power of the current oscillations at high V . It is clear that for all θ there are no
current oscillations (Ia = 0) for V � 280 mV, corresponding with the position of
the Esaki–Tsu peak when θ = 0◦ (Figure 5.2). Generally, as θ increases, the critical
voltage above which the system has current oscillations (Ia > 0), Vc, increases. At
first glance, this may seem surprising since, as we increase θ , the resonances in
vd(F) shift to lower F, suggesting that we might expect Vc to decrease with increasing
θ . However, altering θ also changes the strength of the resonant features, which
makes Vc depend in a complicated way on the shape of the vd(F) curve.
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To understand the cause of the complex variation of Vc with θ , it is useful to
recap how the drift velocity varies with F and θ . Figure 5.11 is a gray scale map
showing the variation of vd(F, θ ). The resonant features due to the Esaki–Tsu peak
when ωBτ = 1 (dotted line labeled ET), and the features due to the Bloch and
cyclotron resonances r = 0.5 (dotted line labeled r = 0.5), 1 (labeled r = 1.0), and
2 (labeled r = 2.0) peaks are clearly visible. The resonant features become more
pronounced as θ is increased to 45◦ because the coupling between the cyclotron
and Bloch oscillations strengthens. Increasing θ beyond 45◦ weakens the resonant
peaks as the cyclotron and Bloch oscillations decouple. In addition, the resonances
all occur at lower field values, resulting in ‘‘bunching’’ of the drift velocity peaks,
clear for 60◦

< θ < 80◦. When θ > 80◦, the Esaki–Tsu peak again dominates as the
resonance effects diminish. Now, however, we find that the Esaki–Tsu peak occurs
at a higher F value as θ approaches 90◦. This shift occurs because the magnetic
field deflects the electron away from the x-axis toward the z-axis, thus reducing the
drift velocity and increasing the electric field required to obtain the maximum drift
velocity [92].

The form of the vd(F, θ ) map shown in Figure 5.11 enables us to explain
the variation of Vc with θ . For values of θ � 27◦, Figure 5.11 reveals that the
Esaki–Tsu peak is dominant in vd and, consequently, Vc is constant (Figure 5.10),
with current oscillations being induced by the region of negative differential
velocity immediately following the Esaki–Tsu peak. When 40◦ � θ � 60◦, the
r = 1 peak is dominant in Figure 5.11, and, correspondingly, Vc jumps to a
higher voltage ≈600 mV corresponding to the region of high negative differential
velocity following the r = 1 peak. For 60◦ � θ � 75◦, Figure 5.11 shows that the
region of negative differential velocity occurs at increasingly high F as θ increases
and, correspondingly, Vc also increases. For 75◦ � θ � 85◦, the amplitude of the
higher order resonant peaks in the drift velocity diminish and, correspondingly, Vc

decreases. When θ � 85◦, the Esaki–Tsu peak dominates and, since at higher θ it
occurs at higher F, we find a slight increase in Vc.

The surface plot of Ia in Figure 5.10 also gives an estimate of the power of
the current oscillations. When θ � 20◦, we find that the current oscillations are
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relatively weak, although increasing the voltage from Vc to 1 V raises the amplitude
of the oscillations by ≈15 mA (from ≈5 mA to 18 mA when θ = 0◦). The increase
in the oscillatory amplitude can again be attributed to the shape of the drift velocity
curve. Increasing the voltage across the device enhances the field difference between
the low- and high-field regions in the superlattice and, hence, the difference in
the drift velocity between the high- and low-field regions. This allows more charge
to be injected into the charge domain, thereby enhancing the current oscillations.
At higher voltages, the low- and high-field regions (corresponding to high- and
low-velocity regions) are both larger, which allows the domain to form and grow
more quickly and thereby increase the amount of charge in the domain.

As θ increases so that the r = 1 resonance strengthens in vd(F), there is a gradual
increase in the amplitude of the current oscillations until θ = 45◦, since increasing
the peak drift velocity in vd(F) also increases the associated negative differential ve-
locity (Figure 5.11). The enhanced velocity injects more charge into the domains and
the larger negative differential velocity allows the domain to form quicker and thus
‘‘collect’’ more charge. In addition, there are new domain filaments formed by the
extra features in the drift velocity curve, which carry more charge through the super-
lattice. These effects combine to increase the amplitude of the current oscillations.

Increasing θ beyond 45◦ leads to the appearance of a second region of enhanced
current oscillations in Figure 5.10 when θ ≈ 70◦, where a large number of resonant
domains are induced in the superlattice. Further increasing θ to 90◦ generally
decreases Ia until θ = 90◦, when Ia has qualitatively the same form as when θ = 0◦.

5.2.6
Frequency of I(t) for 0◦

< θ < 90◦

In Sections 5.2.3 and 5.2.4, it was shown that by inducing extra charge domain
filaments it was possible to significantly increase the power and frequency of
the current oscillations, especially when θ = 40◦ and V = 610 mV, where the
dominant component in the frequency spectrum was the fifth harmonic with a
frequency of 92 GHz. To explore this further, Figure 5.12 shows a gray scale map
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Figure 5.12 Gray scale map of fmax(V, θ) (scale right) calculated for B = 15 T.
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of the dominant harmonic in the I(t) frequency spectrum, fmax, versus θ and V .
The figure reveals a startling increase in the characteristic frequency of the system
when a tilted magnetic field is applied to the superlattice. Generally for low θ � 5◦

fmax ≈ 25 GHz when V ≈ Vc, but decreases with increasing V > Vc. This is because
increasing V raises the electric field in the superlattice, thereby reducing the drift
velocity and, hence, the frequency of the oscillations in I(t) (Figure 5.4).

However, as soon as a resonant peak appears in the drift velocity curve when
θ ≈ 15◦ (Figure 5.11), there is an immediate increase in the frequency of the
current oscillations to approximately 40 GHz (Figure 5.12) as extra charge domains
are induced in the superlattice. Again, increasing the voltage causes a decrease in
the frequency of the I(t) oscillations because the fields in the superlattice increase,
thus diminishing the effect of the resonant features. The optimum voltage for the
maximum frequency output occurs when, throughout the superlattice, the electric
fields encompass all resonances in vd(F) so that all the charge domains contribute
to the features in the I(t) curve.

As θ increases, the power of the higher harmonics in the frequency spectra
increases because of the creation of extra charge domains until, at θ ≈ 57◦, the
frequency of the highest powered peak is, astonishingly, at ≈180 GHz: an order of
magnitude increase in the frequency of the dominant peak observed when θ = 0◦.

Recent experimental results [93, 94] show successfully that by using backward
wave oscillators, it is possible to take advantage of the higher harmonics of
frequency generators such as superlattices. Therefore, to quantify the overall power
of the high-frequency components, we calculate Pint = 〈P(f )〉, where 〈.〉 denotes
integration over f > 0.2 THz. Figure 5.13 shows a gray scale map of Pint in the
V − θ plane. For V < Vc (left of the dashed curve in Figure 5.13), Pint = 0 because
there are no charge domain oscillations (see also Figure 5.10).

As for the case of fmax, Pint generally increases with increasing θ as extra charge
domains are formed in the superlattice. We find there is a maximum in Pint (dark
gray region to right of dashed line) when V ≈ 800 mV and θ ≈ 70◦. In this regime,
Pint is an order of magnitude higher than for θ = 0◦ because of the formation of
multiple propagating charge domains.
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5.3
Conclusion

In this chapter, we considered the effect of a tilted magnetic field on the dynamics
and structure of charge domains in biased superlattices and formulated a modified
drift-diffusion model. Simulations of the collective electron dynamics revealed
that the extra negative differential drift velocity regions, caused by the resonant
peaks, induce multiple charge domains. These extra domains increase both the
amplitude and frequency of the current oscillations – both effects that should be
experimentally observable.

Recently there has been some work on the demonstration of stable THz gain
in superlattices using a modulated bias [11] and also with a tilted magnetic field
applied [95]. Thus far, these studies have focused on the homogeneous field case.
It would be interesting to study the gain of superlattices in the nonhomogeneous
field case to confirm the existence of the high-frequency components in the current
spectra. Also, our results suggest that it is possible to control the form and collective
dynamics of charge domains in superlattices by using single-electron miniband
transport to tailor vd(F). Multiple vd maxima can also be created in other ways, for
example, by applying an AC electric field [96], which could be studied in the context
of this model.
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Noise-induced front motion: Signa-
ture of a global bifurcation. Phys.
Rev. Lett., 96 (24), 244104. DOI:
10.1103/PhysRevLett.96.244104. URL
http://link.aps.org/abstract/PRL/v96/
e244104.

67. Wacker, A. (2002) Semiconductor super-
lattices: a model system for nonlinear
transport. Phys. Rep., 357, 1.

68. Soskin, S.M., Khovanov, I.A., Mannella,
R., and McClintock, P.V.E. (2009) Noise
and Fluctuations: 20th International
Conference on Noise and Fluctuations
(ICNF-2009), vol. 1129 AIP, Melville,
New York, pp. 17–20.

69. Esaki, L. and Tsu, R. (1970) Superlattice
and negative differential conductivity
in semiconductors. IBM J. Res. Dev.,
14, 61.

70. Shik, A. (1975) Sov. Phys. Semicond., 8,
1195.

71. Ignatov, A.A., Dodin, E.P., and
Shashkin, I.V. (1991) Transient response
theory of semiconductor superlattices:

connection with bloch oscillations. Mod.
Phys. Lett. B, 5 (16), 1087–1094.

72. Canali, L., Lazzarino, M., Sorba, L., and
Beltram, F. (1996) Stark-cyclotron reso-
nance in a semiconductor superlattice.
Phys. Rev. Lett., 76 (19), 3618–3621.
DOI: 10.1103/PhysRevLett.76.3618.

73. Schomburg, E., Grenzer, J., Hofbeck,
K., Blomeier, T., Winnerl, S., Brandl,
S., Ignatov, A., Renk, K., Pavel’ev, D.,
Koschurinov, Y., Ustinov, V., Zhukov,
A., Kovsch, A., Ivanov, S., and Kop’ev, P.
(1998) Millimeter wave generation with
a quasi planar superlattice electronic
device. Solid-State Electron., 42, 1495.
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6
Quantum Dot Laser Tolerance to Optical Feedback
Christian Otto, Kathy Lüdge, Evgeniy Viktorov, and Thomas Erneux

6.1
Introduction

In optical fiber networks, the semiconductor laser source may be perturbed
by unavoidable optical feedback from fiber pigtails or fiber connectors unless
expensive optical isolators are used. Analytical expressions for the stable operation
of laser diodes are highly desirable and have been a constant preoccupation of
researchers in the field [1]. Mork et al. [2] investigated the Lang and Kobayashi
equations describing a quantum well (QW) semiconductor laser subject to delayed
optical feedback and derived an approximation of the stability boundary in terms
of the feedback parameter k. k2 ≡ Pr/Pi is defined as the ratio of reflected power Pr

and emitted power Pi. Mathematically, this stability boundary corresponds to the
lowest possible value of the first Hopf bifurcation of an external cavity mode. The
external cavity modes (ECMs) are the basic solutions of a laser subject to optical
feedback from a distant mirror. In the weak feedback limit, there exists only one
mode that is determined by the feedback phase C = ω0τec, in first approximation
(ω0 is the angular frequency of the solitary laser and τec is the round-trip time). The
stability condition derived by Mork et al. [2] is given by

k < kc ≡ �QW

√
1 + α2

(6.1)

where α is the linewidth enhancement factor and �QW is defined as the damping
rate of the relaxation oscillations (ROs) multiplied by the photon lifetime τp, so
that kc is dimensionless. Because of a possible confusion with a different definition
of the damping rate used by Mork et al. [2], we derive the expressions of the ROs
frequency ωQW and damping rate �QW from their rate equations in Appendix
A. As noted by Mork et al. [2], Eq. (6.1) was previously suggested by Helms and
Petermann [3] as a simple analytical criterion for tolerance with respect to optical
feedback. Helms and Petermann [3] evaluate the validity of Eq. (6.1) by analyzing
numerically the stability of the minimum linewidth ECM. They noted that this
approximation gives a good description of the critical feedback level as long as
the linewidth enhancement factor α is significantly larger than unity. They then

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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proposed an empirical law given by

kc = �QW

√
1 + α2

α2
. (6.2)

Both Eqs. (6.1) and (6.2) are used in current experimental studies of quantum dot
(QD) lasers subject to optical feedback. Specifically, Eq. (6.1) is used in [4], and Eq.
(6.2) is used in [5–7]. Note that the minimum linewidth mode appears as the first
ECM in the weak feedback limit for the feedback phase C = − arctan(α). For this
mode, the minimum value of the feedback strength of the first Hopf bifurcation,
which marks the critical feedback strength below that the laser is guaranteed to be
stable, is given by Levine et al. [8]

kc = �QW

√
1 + α2

α2 − 1
. (6.3)

The approximation of the first Hopf bifurcation in terms of an arbitrary phase
and thus for arbitrary ECMs is derived in [9]. Substituting the expression for
the frequency of the minimum linewidth mode � � C = − arctan(α) then leads to
Eq. (6.3). The denominator in Eq. (6.3) is different from the denominator of Eq. (6.2),
which explains the numerically observed singularity as α → 1+ [3]. The expression
(6.1) follows from analytic considerations of the first Hopf bifurcation at a feedback
phase C = π + arctan(α), which provides the lowest possible value of kc. The
inequality in Eq. (6.1) is based on a series of approximations (k � 1, ωQWτec/τp � 1,
α > 1), which may or may not be appropriate. Asymptotic techniques were later used
to determine systematic approximations for a variety of cases (pump parameter
close to threshold, short external cavity) [9]. In this approach, all small or large
dimensionless parameters appearing in the rate equations are scaled with respect
to a unique parameter γ , defined as the ratio of the photon and carrier lifetimes
(γ ≡ τp/τs ∼ 10−2 –10−3) [10]. Different scalings lead to different limits. We shall
use the same strategy for two different rate equation models that are currently used
in order to determine useful information on the dynamics of QD lasers. As we
shall demonstrate, the stability condition can still be formulated by Eq. (6.1) but
with different expressions for the damping rate �.

Both models with one carrier type and electron–hole models have been suc-
cessfully used to describe turn-on experiments [11–14], gain recovery dynamics
[15–17], optical injection [18] and optical feedback [19, 20]. The rate equation
models with only one carrier type assume the same scattering rates for electrons
and holes. They allow the derivation of simple analytical expressions that are useful
when examining experimental data. Electron–hole rate equation models take into
account the fact that the thermal redistribution occurs on different time scales for
electrons and holes. These models aim to bridge the gap between a microscopic
description and the simpler rate equation models but are too complicated for direct
analysis.

In QD semiconductor devices, the carriers are first injected into a two dimensional
carrier reservoir, that is, a QW, before being captured by a dot. The minimal way
to describe this process is to formulate three rate equations for the electrical field
in the cavity, the carrier density in the reservoir, and the occupation probability of
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a dot [21, 22]. These equations were analyzed using the asymptotic limit γ → 0 in
[23], and we shall apply the same analysis for the laser subject to optical feedback.
Our main result is described in Section 6.2. The electron-hole rate equation model
that we consider next involves five independent variables for the charge carrier
densities in the QD, the charge carrier densities in the reservoir, and the photon
density in the cavity, and it involves microscopically calculated scattering rates that
are strongly nonlinear functions of the carrier densities in the reservoir [11, 12,
24, 25]. (See Chapter 1 for a review on the microscopic modeling). We recently
showed that these equations can be simplified by taking advantage of the limit
γ → 0 [26]. Although coefficients of the reduced equations need to be computed
numerically, distinct scaling laws can be extracted for the RO frequency and RO
damping rate. We plan to use the same analysis here for the case of a laser
subject to optical feedback [19]. The main results are summarized in Section 6.3.
The asymptotic studies of the two problems are long and tedious. For clarity, the
detailed computations are relegated to Appendixes B and C, and in the following,
we only concentrate on the final results.

6.2
QD Laser Model with One Carrier Type

The rate equations for a QD laser subject to optical feedback formulated by O’Brien
et al. [27] consist of three equations for the amplitude of the normalized laser field
in the cavity E, the occupation probability ρ of a QD in the laser, and the number
n of carriers in the reservoir per QD. The dimensionless equations are derived in
Appendix B and are of the form

E′ = 1

2

[−1 + g(2ρ − 1)
]

(1 + iα)E + ke−iCE(t′ − τ ), (6.4)

ρ ′ = γ
[
Bn(1 − ρ) − ρ − (2ρ − 1)|E|2] , (6.5)

n′ = γ
[
J − n − 2Bn(1 − ρ)

]
(6.6)

where prime means differentiation with respect to the dimensionless time t′ = t/τp.
The factor 2 in Eq. (6.6) accounts for the twofold spin degeneracy in the quantum dot
energy levels. A similar factor 2 is included in the definition of the differential gain
factor g in Eq. (6.4) [28]. The parameter γ ≡ τp/τs is the ratio of the photon lifetime
and the carrier recombination time. The relaxation rates of ρ and n are assumed
equal for mathematical simplicity. J is the electrically injected pump current per
dot, and it is the control parameter. The nonlinear term Bn(1 − ρ) describes the
carrier exchange rate between the reservoir and the dots. B ≡ τs/τcap ∼ 102−103 is
the dimensionless capture rate, and 1 − ρ is the Pauli blocking factor. The three
parameters B, γ , and g − 1 control the time-dependent response of the solitary
QD laser. The last term in Eq. (6.4) represents the contribution of the delayed
optical feedback. k and τ are the dimensionless feedback rate and round-trip time
laser-mirror-laser, respectively, and C is the feedback phase.
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As for the conventional laser, our objective is to determine the minimal value
of the feedback rate below which a stable operation can be guaranteed. We shall
consider γ as our order parameter because it does not appear in the expressions
of the steady states and scale B and g − 1 with respect to γ . Several cases are
possible, depending on their respective scalings. The physically most interesting
case considers the relation B(1 − ρ) = O(γ −1/2) [23], which basically assumes
the carrier capture process into the QDs to be much faster than the radiative
recombination time of the carriers in the QDs. The first Hopf bifurcation point kH

is determined by Eq. (6.69) (see Appendix B for the asymptotic analysis), and its
lowest possible value and thus the lower bound for the critical feedback strength
is given by the same expression as Eq. (6.1) but with a different dimensionless
damping rate named �

QD
2 :

�
QD
2 ≡ γ

2I∗ + B2
1

[
2I∗ 1 + I∗

1 − g−1
+ B2

1

2
(1 + 2I∗)

]
(6.7)

with B1 ≡ γ 1/2B(1 − g−1), and the steady state intensity of the solitary laser I∗

(Appendix B). In the limit γ → 0, I∗ is given by

I∗ ≡ g

2
( J − Jth) (6.8)

where Jth ≡ 1 + g−1 is the threshold current in this limit. The expression for the
RO frequency in units of τp is ωQD ≡ √

2γ I∗ and is the same as the one for the
QW laser (ωQW is given by Eq. (6.37)). If the damping rate given in Eq. (6.7) is
explored in the limits B2

1 → ∞ (fast capture) or I∗ → 0 (close to threshold), the
value decreases and approaches the much lower RO damping rate of QW lasers

�QW ≡ γ (1 + 2I∗)

2
(6.9)

(see Appendix A, Eq. (6.38)), thus in this limits �
QD
2 → �QW.

However, if B2
1 = O(1) and/or g is close to 1, �

QD
2 is much larger than �QW. This

can be demonstrated by rewriting �
QD
2 as

�
QD
2 = �QW + γ I∗

2I∗ + B2
1

g + 1 + 2I∗

g − 1
(6.10)

where the correction term clearly indicates the effect of g − 1 if g is close to 1.

6.3
Electron-Hole Model for QD Laser

The microscopically based rate equation model for a solitary QD laser that separately
treats electron and hole dynamics has been formulated and further investigated in
[12, 14, 24] (see Chapter 1 for a review). Supplemented by the optical feedback term
[19] and formulated with dimensionless quantities [20], it describes the evolution
of the occupation probability of the confined QD levels, ρe and ρh, the number of
carriers in the reservoir per QD, We and Wh, (e, h stand for electrons and holes,
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respectively), and the normalized slowly varying amplitude of the laser field inside
the cavity E = √

I exp(iφ) with the normalized intensity I and the phase φ.

E′ = 1

2

[
− 1 + g(ρe + ρh − 1)

]
(1 + iα)E + ke−iCE(t′ − τ ), (6.11)

ρ ′
e = γ

[
sin
e (1 − ρe) + sout

e ρe − (ρe + ρh − 1)|E|2 − ρeρh

]
, (6.12)

ρ ′
h = γ

[
sin
h (1 − ρh) + sout

h ρh − (ρe + ρh − 1)|E|2 − ρeρh

]
, (6.13)

W ′
e = γ

[
J + (sin

e + sout
e )ρe − sin

e − cWeWh

]
, (6.14)

W ′
h = γ

[
J + (sin

h + sout
h )ρh − sin

h − cWeWh

]
. (6.15)

In the above equations, prime means differentiation with respect to the dimen-
sionless time t′ = t/τp (with the photon lifetime τp). As before, k, C, and τ are
the dimensionless feedback rate, the feedback phase, and the external round-trip
time, respectively, and g is the linear gain parameter. The parameter c accounts
for spontaneous and nonradiative losses in the reservoir, and J is the dimension-
less electrically injected pump current per QD. Further sin

e , sout
e , sin

h , sout
h represent

dimensionless scattering rates that are rescaled by sin,out
e,h = W−1Sin,out

e,h , with W−1

being the carrier lifetime because of radiative recombination inside a QD that
corresponds to τs in the QW and in the QD model with one carrier type. They
are computed numerically from a microscopic theory of carrier–carrier scattering
events between QD and reservoir [12, 24]. The scattering times τe ≡ (Sin

e + Sout
e )−1

and τh ≡ (
Sin

h + Sout
h

)−1
are our reference time scales.

By rescaling time with respect to the RO frequency, which in turn scales like γ 1/2

as γ = τp/τs → 0, reformulating the above equations in terms of deviations from
the steady state and taking advantage of the small value of γ , we showed in [26] that
the rate equations can be reduced to four equations that are given in Appendix C.

As we shall demonstrate, valuable information can be extracted from these
equations on the basis of simple scaling assumptions. Three cases were explored
in [26], which we now review.

6.3.1
Similar Scattering Times τe and τh

At first, one case that assumes the scattering times of both carrier types to be on the
same timescale will be discussed. Further, this case assumes sin

e + sout
e and sin

h + sout
h

to be O(1) quantities compared to γ 1/2. We find that the expression for the critical
feedback strength kc is the same as Eq. (6.1) but with a different damping rate given
by

�S ≡ γ

2

[
sin
e + sout

e

2
+ 2I∗ + ρ∗

h + ρ∗
e + sin

h + sout
h

2

]
(6.16)

where I∗, ρ∗
e , and ρ∗

h are the dimensionless steady state values for the solitary
laser of the light intensity, the electron, and the hole occupation probability in the
QDs, respectively, that need to be computed numerically. In [26], we noted that
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ρ∗
h + ρ∗

e = 1 + g−1, where g = O(1) is the dimensionless gain coefficient. Eq. (6.16)
then simplifies as

�S = γ

2

[
sin
e + sout

e

2
+ 2I∗ + 1 + g−1 + sin

h + sout
h

2

]
. (6.17)

Eq. (6.17) can be reformulated as

�S = �QW + 1

2

[
sin
e + sout

e

2
+ sin

h + sout
h

2

]
(6.18)

where

�QW ≡ γ

2

[
1 + g−1 + 2I∗] (6.19)

has the same format as Eq. (6.9) and can be considered as the contribution of the
conventional QW laser.

6.3.2
Different Scattering Times τe and τh

The microscopic calculations predict very large scattering rates for the holes [12]
because of their much larger effective mass. Consequently, this section aims to
discuss the effect of holes if they are much faster than the electrons. For the
asymptotic analysis, we introduce the dimensionless parameter a as a measure for
the hole scattering rates

a ≡
√

γ

2I∗ (sin
h + sout

h ) (6.20)

where I∗ is assumed to be an O(1) quantity.

6.3.3
Small Scattering Lifetime of the Holes a = O(1)

To this end, we assume that sin
e + sout

e = O(1), while sin
h + sout

h = O(γ −1/2), which
then implies from Eq. (6.20) that a = O(1). Note that this is different from Section
6.3.1, where the scaling a = O(γ 1/2) was discussed. The leading order equation for
the growth rate is the same as for the solitary laser [26] and does not contain any
contribution of the feedback. In other words, the amplitude of the feedback k is
too weak (k = O(γ )). We would need to consider the case k = O(γ 1/2) in order to
find the feedback parameter in the leading equation for the growth rate, but this
problem has not been solved analytically yet.

6.3.4
Very Small Scattering Lifetime of the Holes a = O(γ −1/2)

For the case in which the hole scattering time is on the order of pico sec-
onds, another scaling has to be introduced. Thus, for this case, we assume that
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Figure 6.1 Solid line shows the first Hopf
bifurcation point k = kH as a function of α

as obtained numerically from the original
rate equations using a continuation method
[20] (C = π + arctan(α), τ = 80). The broken

line represents its analytical approximation
given by Eq. (6.1). As α decreases toward
zero, kH increases, and the analytical approx-
imation that assumes k � 1 begins to fail.

a = O(γ −1/2), while sin
e + sout

e = O(1). Compared to the case of similar scattering
times, the RO frequency is slightly reduced by a factor of 1/

√
1/2. The expression

for the critical feedback strength is the same as Eq. (6.1) but with a different
dimensionless damping rate given by

�Da ≡ γ

2

[
I∗

γ

1

sin
h + sout

h

+ sin
e + sout

e + I∗ + ρ∗
h

]
. (6.21)

In Figure 6.1, we compare numerical and analytical predictions for a laser subject
to a long external cavity. The numerical determination of the Hopf bifurcation
point kH has been obtained by using a continuation technique (DDE-Biftool [29])
applied to the original electron–hole rate equation model [19, 26] and not from the
reduced Eqs. (6.87)–(6.90). Details on the numerical simulations and parameter
values are documented in [20]. The broken line in Figure 1 represents the analytical
approximation given by Eq. (6.1). As α decreases toward zero, kH increases and
the analytical approximation that assumes k � 1 begins to fail, while a very good
agreement with the analytic results is found for larger α.

6.4
Summary

The expression for the critical feedback strength from Eq. (6.1) provides a sufficient
condition for stable operation of a QW laser subject to optical feedback. The critical
feedback rate above which pulsating instabilities are observed is determined as
a function of the linewidth enhancement factor α and the damping rate of the
ROs. Its simplicity has encouraged experimental studies of QD lasers subject to
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optical feedback. It is shown that Eq. (6.1) is also a good approximation for QD
lasers provided that their much larger damping rate of the relaxation oscillations is
considered. The damping rate is generally obtained by fitting data. In this review, we
examine two different rate equations models for QD lasers and derive the stability
condition with analytical expressions for the damping rate. These expressions allow
us to anticipate the effect of specific parameters, for example, the carrier scattering
rates and the differential gain coefficient, and design lasers with a larger tolerance
to optical feedback.
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6.5
Appendix A: Rate Equations for Quantum Well Lasers

The rate equations for a solitary QW laser used by Mork et al. [2] are given by

dE
dt

= 1

2

[
GN (N − N0) − 1

τp

]
E, (6.22)

dN

dt
= J − N

τs
− GN (N − N0)E2

. (6.23)

Here, E is the amplitude of the electrical field, and N is the carrier density. The
linear gain coefficient is denoted by GN , N0 is the transparency density of carriers,
J is the pumping current and τp and τs are the photon and carrier lifetimes,
respectively. The nonzero intensity steady state is

N∗ = N0 + 1
GNτp

, (6.24)

E∗2 = 1

GN (N − N0)

(
J − N

τs

)
. (6.25)

From the linearized equations, we then determine the characteristic equation for
the growth rate λ

λ2 +
(

1

τs
+ GNE∗2

)
λ + 1

τp
GNE∗2 = 0. (6.26)

In order to properly define the relaxation oscillation frequency and its damping
rate, we take advantage of the fact that τp � τs. The roots of the quadratic equation
then take the form

λ = −�
QW
RO ± iωQW

RO (6.27)
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where

ω
QW
RO ≡

√
GN

1

τp
E∗2 − 1

4
(

1

τs
+ GNE∗2)2 �

√
GN

1

τp
E∗2, (6.28)

�
QW
RO ≡ 1

2

(
1

τs
+ GNE∗2

)
= 1

2

(
1

τs
+ τpω

2
RO

)
(6.29)

are defined as the RO frequency and RO damping rate of the solitary laser,
respectively. They are the quantities that are measured experimentally. Mork et al.
[2] introduced the RO damping rate as ‘‘τ−1

R ”, which equals 2�
QW
RO but could wrongly

be interpreted as �
QW
RO .

In order to determine asymptotic approximations, we need to reformulate the
rate equations in dimensionless form. The simplest way is to measure time in
units of the photon lifetime by introducing

t′ ≡ t/τp. (6.30)

Furthermore, introducing the new dimensionless dependent variables E and Z
defined by

E ≡
√

GNτs

2
E and Z ≡ 1

2

[
GN (N − N0)τp − 1

]
(6.31)

allows to reduce the number of parameters. Inserting Eqs. (6.30) and (6.31) into
Eqs. (6.22) and (6.23), we find

dE

dt′
= ZE, (6.32)

dZ

dt′
= γ

[
P − Z − (1 + 2Z)E2] (6.33)

where γ and P are defined by

γ ≡ τp

τs
, P ≡ GNτpτs

2
(J − Jth), with Jth ≡ N0

τs
+ 1

GNτpτs
. (6.34)

The nonzero intensity steady state is

Z∗ = 0 and I∗ = E∗2 = P, (6.35)

and the characteristic equation for the growth rate σ is given by

σ 2 + γ (1 + 2I∗)σ + 2I∗γ = 0. (6.36)

Provided γ is sufficiently small, the roots of Eq. (6.36) are complex-conjugated. The
dimensionless RO frequency and RO damping rate (in units of time t′) are then
defined from the imaginary and real part of these roots. We obtain

ωQW ≡
√

2γ I∗ − γ 2

4
(1 + 2I∗)2 �

√
2γ I∗ as γ → 0 and (6.37)

�QW ≡ γ (1 + 2I∗)

2
. (6.38)

In our analysis of the QD rate equations, we use the same dimensionless time
t′ ≡ t/τp and reformulate the dynamic equations so that the same γ multiply the
right-hand side of the carrier equations.
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6.6
Appendix B: Asymptotic Analysis for a QD Laser Model with One Carrier Type

The equations examined by O’Brien et al. [27] are the following three equations
for the amplitude of the laser field in the cavity, E; the number of carriers in the
reservoir per dot, N; and the occupation probability of the dots in the laser ρ

dE
dt

= 1
2

[
− 1

τp
+ g0θ (2ρ − 1)

]
E+ iδω

2
E + η

2
E(t − τec), (6.39)

dρ

dt
= − ρ

τs
− g0(2ρ − 1)|E|2 + F̃(N, ρ), (6.40)

dN

dt
= −N

τs
+ J̃ − 2NQDF̃(N, ρ). (6.41)

For the definition of the various parameters, see [27]. The capture rate is described
by the term F̃ = C̃N2(1 − ρ) in [27] and is proportional to the number of carriers
present as well as the probability to find a dot. As in Reference [23], we shall
consider F̃ = B̃N(1 − ρ) instead of F̃ = C̃N2(1 − ρ). Here, the carrier phonon
and the Auger carrier capture rates are denoted by B̃ and C̃, respectively. We
define δω = α/τp, where α is the linewidth enhancement factor. NQD is the two
dimensional density of quantum dots. In our analysis, we introduce the α factor in
the traditional way, that is, by the term (1 + iα) multiplying the full square bracket
in Equation (6.39). Moreover, we take into account the feedback phase C = ω0τec,
where ω0 is the angular frequency of the solitary laser (C = 0 mod 2π in [27]). Our
starting equations are then given by

dE
dt

= 1

2

[
− 1

τp
+ g0θ (2ρ − 1)

]
(1 + iα)E + η

2
e−iCE(t − τec), (6.42)

dρ

dt
= − ρ

τs
− g0(2ρ − 1)|E|2 + B̃N(1 − ρ), (6.43)

dN

dt
= −N

τs
+ J̃ − 2NQDB̃N(1 − ρ). (6.44)

By introducing a dimensionless time t′, the number of carriers in the reservoir per
QD n, and a normalized field E , according to

t′ ≡ t/τp, n ≡ N/NQD, E ≡ √
g0τsE, (6.45)

the Eqs. (6.42)–(6.44) simplify as

dE

dt′
= 1

2

[−1 + g(2ρ − 1)
]

(1 + iα)E + ke−iCE(t′ − τ ), (6.46)

dρ

dt′
= γ

[−ρ − (2ρ − 1)|E|2 + Bn(1 − ρ)
]

, (6.47)

dn

dt′
= γ

[−n + J − 2Bn(1 − ρ)
]

(6.48)

where

γ ≡ τp

τs
, g ≡ g0θτp, k ≡ η

2
τp, τ ≡ τec/τp, J ≡ J̃τs

NQD
, and B ≡ B̃NQDτs. (6.49)
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If we consider the rate equations (6.46)–(6.48), in terms of the normalized intensity
I and the phase φ of the field E = √

I exp(iφ), the equations can be rewritten as

I′ = [−1 + g(2ρ − 1)
]

I + 2k
√

I(t′ − τ )I(t′) cos(−C + φ(t′ − τ ) − φ), (6.50)

φ′ = 1

2

[−1 + g(2ρ − 1)
]
α + k

√
I(t′ − τ )

I(t′)
sin(−C + φ(t′ − τ ) − φ), (6.51)

ρ ′ = γ
[
Bn(1 − ρ) − ρ − (2ρ − 1)I

]
, (6.52)

n′ = γ
[
J − n − 2Bn(1 − ρ)

]
. (6.53)

6.6.1
External Cavity Modes

The basic solutions of the feedback problem are the external cavity modes (ECMs).
They are defined as solutions with constant field intensity and carrier numbers, that
is, I = Is, ρ = ρs, n = ns, and a phase of the field that varies linearly in time given
by φ = φs ≡ −C t′

τ
+ �s

t′
τ

with the ECM frequency �s. For simplicity of notation,
the index s is omitted in the following.

From Eqs. (6.50)–(6.53), the basic solutions satisfy the following conditions:

1
2

[−1 + g(2ρ − 1)
] = −k cos(�),

� = C − kτ
[
α cos(�) + sin(�)

]
,

n = J

1 + 2B(1 − ρ)
,

I = Bn(1 − ρ) − ρ

2ρ − 1
.

Solving for ρ, we obtain

ρ = 1
2

(1 + g−1) − k

g
cos(�), (6.54)

n = J

1 + 2B(1 − ρ)
, (6.55)

I = B(1 − ρ)

1 + 2B(1 − ρ)

J − Jth

2ρ − 1
(6.56)

where

Jth ≡ ρ(1 + 2B(1 − ρ))

B(1 − ρ)
. (6.57)

We note the following relations, which will be useful when we eliminate n from
the coefficients of the characteristic equation:

Bn + 1 + 2I = 1 + I

1 − ρ
,[ (

1 + 2B(1 − ρ)
)
(Bn + 1 + 2I)

−2B2n(1 − ρ)

]
= 1 + I

1 − ρ
+ 2B(1 − ρ)(1 + 2I).
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6.6.2
Stability

From the linearized equations, we determine the following condition for the growth
rate σ :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
k cos(�)F

−σ

)
k
√

I sin(�)F g
√

I 0

−k√
I
F sin(�)

(
cos(�)F

−σ

)
gα 0

−2γ (2ρ − 1)
√

I 0

⎛⎝−γ

(
Bn + 1
+2I

)
−σ

⎞⎠ γ B(1 − ρ)

0 0 2γ Bn

⎛⎝−γ

(
1

+2B(1 − ρ)

)
−σ

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(6.58)

where

F ≡ exp(−στ ) − 1. (6.59)

Expanding the determinant (Eq. (6.58)), we find the following characteristic
equation for the growth rate σ

0 = σ 4 + σ 3

[
γ

(
1 + 2B(1 − ρ) + 1 + I

1 − ρ

)
− 2k cos(�)F

]

+ σ 2

⎡⎣ 2γ (2ρ − 1)gI + γ 2
(

1+I
1−ρ

+ 2B(1 − ρ)(1 + 2I)
)

+ k2F2

−γ 2k cos(�)F
(

2B(1 − ρ) + 2+I−ρ

1−ρ

) ⎤⎦

+ σ

⎡⎢⎢⎣
2γ (2ρ − 1)gI

[
γ

(
1 + 2B(1 − ρ)

) + k(α sin(�) − cos(�))F
]

−γ 22k cos(�)F
(

1+I
1−ρ

+ 2B(1 − ρ)(1 + 2I)
)

+γ k2F2
(

2B(1 − ρ) + 2+I−ρ

1−ρ

)
⎤⎥⎥⎦

+
[

γ 2k2F2
(

1+I
1−ρ

+ 2B(1 − ρ)(1 + 2I)
)

+2kγ 2(2ρ − 1)gI
(
1 + 2B(1 − ρ)

)
(α sin(�) − cos �))F

]
. (6.60)

We next investigate two cases that depend on the size of parameter B.

6.6.3
B(1 − ρ) = O(1)

We solve Eq. (6.60) by seeking a solution of the form

σ = γ 1/2σ0 + γ σ1 + · · · ,

k = γ k1 + · · · . (6.61)

From the Eqs. (6.54)–(6.56) we note the following scaling laws:

I = I∗ + O(γ ), ρ = ρ∗ + O(γ ), and � = �0 + O(γ ) (6.62)
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where

I∗ = B(1 − ρ∗)

(1 + 2B(1 − ρ∗))

( J − Jth,0)

(2ρ∗ − 1)
= g

2

B(1 − g−1)

1 + B(1 − g−1)
( J − Jth,0),

ρ∗ = 1
2

(1 + g−1), and �0 = C. (6.63)

Here, I∗ and ρ∗ denote intensity and occupation probability of the QDs for the
solitary laser, respectively, and the threshold current of the solitary laser is given
by Erneux et al. [23]

Jth,0 ≡ ρ∗(1 + 2B(1 − ρ∗))

(1 − ρ∗)B
= 1 + B(1 − g−1)

B(1 − g−1)
(1 + g−1).

We find from Eq. (6.60) the following sequence of problems

O(γ 2) : 0 = σ 4
0 + σ 2

0 2I∗, (6.64)

O(γ 5/2) : 0 = (
4σ 2

0 + 4I∗) σ0σ1

+ σ 3
0

[
1 + 2B(1 − ρ∗) + 1 + I∗

1 − ρ∗ − 2k1 cos(�0)F0

]
+ 2I∗σ0

[
k1(α sin(�0) − cos(�0))F0

+ 1 + 2B(1 − ρ∗)
]

(6.65)

where

F0 ≡ exp(−γ 1/2σ0τ ) − 1. (6.66)

From Eq. (6.64), we determine σ0 as

σ0 = i
√

2I∗

and from Eq. (6.65) with

ωQD ≡
√

2γ I∗, (6.67)

we find σ1 as

σ1 = −� + k1

2
(α sin(�0) + cos(�0))

[
(cos(ωQDτ ) − 1) − i sin(ωQDτ )

]
where

� ≡ 1 + I∗

1 − g−1
.

The real part of σ1 then is

Re(σ1) = −� − k1(α sin(�0) + cos(�0))sin2(
ωQDτ

2
), (6.68)

which implies stability for all values of k1 if (α sin(�0) + cos(�0)) > 0 or provided
that

k1 < kH
1 ≡ −�

(α sin(�0) + cos(�0))sin2
(

ωQDτ
2

)
= −2

(1 − cos(ωQDτ )(cos(�0 − arctan(α))
�√

1 + α2
(6.69)
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if α sin(�0) + cos(�0) < 0. From Eq. (6.69), we see that the lowest possible value
for kH

1 is for

�0 = C = π + arctan(α) and ωQDτ = π (mod 2π ).

It is given by

k1c ≡ �√
1 + α2

. (6.70)

In terms of the original parameters, the stability condition in Eq. (6.70) implies
that

k < kc ≡ �
QD
1√

1 + α2
(6.71)

where �
QD
1 ≡ γ�, or equivalently,

�
QD
1 = γ

1 + R2
0

1 − g−1
. (6.72)

6.6.4
B(1 − ρ) = O(γ −1/2)

Taking into account that B(1 − ρ) = O(γ −1/2), we introduce a O(1) quantity B1

as B1 ≡ γ 1/22B(1 − ρ∗). With the scaling of ρ = ρ∗ + O(γ ) (Eq. (6.62)), we may
expand Jth from Eq. (6.57) and I from Eq. (6.56) in powers of γ 1/2, which yields

Jth = 2ρ∗ + 1

B(1 − ρ∗)
ρ∗ + O(γ ) = 2ρ∗ + γ 1/22ρ∗B−1

1 + O(γ ),

I = I∗ + γ 1/2I1 + O(γ ) (6.73)

where we have defined the steady state intensity of the solitary laser I∗ in the limit
γ → 0 and its first order correction I1

I∗ = 1
2

1
2ρ∗ − 1

(J − 2ρ∗) = g

2
(J − (1 + g−1)), (6.74)

I1 = − g

2
B−1

1 J. (6.75)

Inserting Eq. (6.61) and Eq. (6.73) into the characteristic Eq. (6.60), we find the
following problems for σ0 and σ1

O(γ 2) : σ 4
0 + σ 3

0 B1 + σ 2
0 2I∗ + σ02I∗B1 = 0, (6.76)

O(γ 5/2) :
[
4σ 3

0 + 3σ 2
0 B1 + 2σ02I∗ + 2I∗B1

]
σ1

= −(σ 2
0 + σ0B1)2I1

− σ 3
0

[
1 + 2

1 + I∗

1 − g−1
− 2k1 cos(�0)F0

]
− σ 2

0

[
B1(1 + 2I∗) − 2k1 cos(�0)F0B1

]
− σ02I∗ [

1 + k1(α sin(�0) − cos(�0))F0
]

− [
2I∗B1k1(α sin(�0) − cos(�0))F0

]
(6.77)
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where F0 is defined by (6.66). Equation (6.76) admits the solution

σ 2
0 = −2I∗ (6.78)

and from Eq. (6.77) with Eqs. (6.78) and (6.67), we find

σ1 = 2σ0I1

4I∗ + k1(α sin(�0) + cos(�0))
[
(cos(ωQDτ ) − 1) − i sin(ωQDτ )

]
2

− 1

4I∗ (σ0 + B1)

[
σ04I∗ 1 + I∗

1 − g−1
+ 2I∗B1(1 + 2I∗)

]
. (6.79)

Equation (6.79) implies that

Re(σ1) = −� + k1(α sin(�0) + cos(�0))(cos(ωQDτ ) − 1)
2

(6.80)

where

� ≡ 1

2I∗ + B2
1

[
2I∗ 1 + I∗

1 − g−1
+ B2

1

2
(1 + 2I∗)

]
(6.81)

is the damping rate of the solitary laser [9]. Our stability conditions are now similar
to those of Eqs. (6.71)–(6.72) with �

QD
2 replacing �

QD
1 , where

�
QD
2 ≡ γ� = γ

2I∗ + γ B2(1 − g−1)

[
2I∗ 1 + I∗

1 − g−1
+ γ B2(1 − g−1)

2
(1 + 2I∗)

]
.

(6.82)

6.7
Appendix C: Asymptotic Analysis for a QD Laser Model with Two Carrier Types

The microscopically based electron-hole rate equation model describes the evolution
of the charge carrier densities in the QD (ne and nh), the carrier densities in the
reservoir (we and wh) (e, h stand for electrons and holes, respectively), and the
photon density nph. See Chapter 1 for the equations with dimensions, while
the dimensionless form is given in Eqs. (6.11)–(6.15). To make the equations
dimensionless, we introduced the dimensionless time t′ ≡ t/τp (with τ−1

p = 2κ) as
well as the dimensionless variables

I ≡ nphA, ρe/h ≡ N
e/h

/NQD, We/h ≡ we/h/Nsum (6.83)

and the dimensionless parameters with

g ≡ �WANQD

2κ
, γ ≡ W

2κ
, k ≡ 1

2κ

K

τin
, τ ≡ 2κτec, (6.84)

sin/out
e/h ≡ 1

W
Sin/out

e/h , c ≡ BNsum

W
, J ≡ j

e0NsumW
. (6.85)

The resulting Eqs. (6.11)–(6.15) for the solitary laser (k = 0) are singular in the
limit γ → 0, because the leading order equations do not admit physical solutions.
The basic idea to remove this singularity is to scale time with respect to the RO
frequency [10], which in turn scales like γ 1/2 in the limit γ → 0. We showed in [26]
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that by taking advantage of the small value of γ → 0 the five rate equations without
feedback can be reduced to three equations for the deviations of the intensity and
the QD populations from their steady state values. The reason basically is that
in these coordinates the dynamical variables for the reservoir populations follow
passively the QD variables and can thus be neglected in first approximation.

Supplemented by the optical feedback term [19], the dynamical equations consist
of four equations for the deviation of the intensity from its steady state, y; the phase
of the electrical field φ; and the deviations ue/h of the QD occupation probabilities
from their steady state values. Specifically, the new dynamic variables y, ue, and uh

are defined via

I = I∗(1 + y) and ρe/h = ρ∗
e/h + √

γωg−1ue/h (6.86)

where the superscript ∗ denotes the steady state values of the solitary laser.
The new set of rate equations is given by

y′ = (ue + uh)(1 + y)

+ 2εζ
√

(1 + y)(1 + y(s − sc)) cos(−C + φ(s − sc) − φ), (6.87)

φ′ = α
1

2
(ue + uh)

+εζ

√
1 + y(s − sc)

1 + y
sin(−C + φ(s − sc) − φ), (6.88)

u′
e = −1

2
y − ε(sin

e + sout
e )ue

−ε(ue + uh)I∗ − ε(ueρ
∗
h + ρ∗

e uh) + O(γ ), (6.89)

u′
h = −1

2
y − auh

−ε(ue + uh)I∗ − ε(ueρ
∗
h + ρ∗

e uh) + O(γ ) (6.90)

where prime means differentiation with respect to the dimensionless time s with

s ≡ ωt′ = ωt/τp and ω ≡
√

2γ I∗ (6.91)

is proportional to the RO frequency of the solitary laser. Equation (6.91) is identical
to ωQW given by Eq. (6.37) and ωQD given by Eq. (6.67). I∗, ρ∗

e , ρ∗
h are dimensionless

steady state values of the solitary laser that need to be computed numerically. The
new feedback amplitude ζ = O(1), the delay sc, the small parameter ε, and a are
defined by

ζ ≡ k

γ
, sc ≡ ωτ , ε ≡

√
γ

2I∗ , and (6.92)

a ≡ ε(sin
h + sout

h ). (6.93)

The dimensionless scattering rates that also need to be computed numerically are
denoted by sin

e , sout
e , sin

h , and sout
h . As we shall now demonstrate, valuable information

can be extracted from these equations on the basis of simple scaling assumptions.
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6.7.1
External Cavity Modes

The basic solutions are the external cavity modes (ECMs). Analog to Section 6.6.1,
they are defined as solutions with constant deviations from the steady state values
of intensity and carrier occupation probabilities, i.e. y = ys, ue = ue,s, uh = uh,s, and
a phase that changes linearly in time

φ = φs ≡ −C
s

sc
+ �s

s

sc
(6.94)

with the ECM frequency �s. For simplicity of notation the index s is omitted in the
following.

From Eqs. (6.87) and (6.88), we find that � satisfies the following transcendental
equation

� = C − εζ sc
(
α cos(�) + sin(�

)
), (6.95)

which implies that � � C as ε → 0, that is, � is independent of the feedback
amplitude ζ , in first approximation. For the subsequent asymptotics we write

� = �0 + O(ε) (6.96)

with �0 = C. From Eq. (6.87), we also note that

ue + uh = −2εζ cos(�), (6.97)

which indicates that both ue and uh are O(ε) small. From Eq. (6.89), we then find
that y is O(ε2) small. These scaling laws for ue, uh, and y are useful when we
reorganize the coefficients of the characteristic equation in powers of ε. Three
cases were explored in [26] which we now examine.

6.7.2
Stability

From the linearized equations, we determine the following condition for the growth
rate μ:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−εζ cos(�)F
−μ

) (−2εζ (1 + y)
× sin(�)F

)
1 + y 1 + y(

εζ
sin(�)
2(1+y) F

) (−εζ cos(�)F
−μ

)
α
2

α
2

− 1
2 0

⎛⎝−ε

(
sin
e + sout

e

+I∗ + ρ∗
h

)
−μ

⎞⎠ −ε
(
I∗ + ρ∗

e

)

− 1
2 0 −ε

(
I∗ + ρ∗

h

) ⎛⎝ −a
−ε(I∗ + ρ∗

e )
−μ

⎞⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(6.98)
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where

F ≡ 1 − e−μsc . (6.99)

Expanding the determinant, we obtain

μ4 + μ3 [
(sin

e + sout
e + 2I∗ + ρ∗

h + ρ∗
e )ε + a + 2εζ cos(�)F

]
−μ2

⎡⎣−(1 + y) −
⎡⎣ ε

(
sin
e + sout

e + I∗ + ρ∗
h

) (
a + ε(I∗ + ρ∗

e )
)

−ε2
(
I∗ + ρ∗

h

) (
I∗ + ρ∗

e

) + ε2ζ 2F2

+2εζ cos(�)F
(
a + ε(2I∗ + ρ∗

e + ρ∗
h + sin

e + sout
e )

)
⎤⎦⎤⎦

+μ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε2ζ 2F2
(
a + ε(2I∗ + ρ∗

e + sin
e + sout

e + ρ∗
h )

)
+2εζ cos(�)F

⎡⎣ε

(
sin
e + sout

e

+I∗ + ρ∗
h

) ⎛⎝ a
+ε(I∗ + ρ∗

e )
−ε2(I∗ + ρ∗

h )
(
I∗ + ρ∗

e

)
⎞⎠⎤⎦

−εζ (1 + y) sin(�)Fα

+2εζ cos(�)F 1
2 (1 + y) + 1

2 (1 + y)
[
a + (sin

e + sout
e )ε

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ε2ζ 2F2

[
ε

(
sin
e + sout

e

+I∗ + ρ∗
h

)(
a + εI∗

+ερ∗
e

)
− ε2

(
I∗ + ρ∗

h

)
(I∗ + ρ∗

e )
]

−2εζ (1 + y) sin(�)F α
4

[
a + (sin

e + sout
e )ε

]
+εζ cos(�)F 1

2 (1 + y)
[
a + (sin

e + sout
e )ε

]
.

(6.100)

6.7.3
Similar Carrier Lifetimes τe and τh with a = O(ε)

In this subsection, we assume that both sin
e + sout

e and sin
h + sout

h are O(1) quantities.
We seek a solution of the form

μ = μ0 + εμ1 + . . . (6.101)

and assume that sin
h + sout

h = O(1). Inserting Eqs. (6.93), (6.96) and (6.101) into
Eq. (6.100), we obtain the following sequence of problems for μ0 and μ1

O(1) : μ4
0 + μ2

0 = 0, (6.102)

O(ε) : 4μ3
0μ1 + 2μ0μ1

+μ3
0

[
sin
e + sout

e + 2I∗ + ρ∗
h + ρ∗

e + sin
h + sout

h + 2ζ cos(�0)F0
]

+μ0

[ −ζ sin(�0)F0α

+ζ cos(�0)F0 + 1
2 (sin

h + sout
h + sin

e + sout
e )

]
= 0, (6.103)

where we have introduced

F0 ≡ 1 − e−μ0sc . (6.104)

The solution of Eq. (6.102) is

μ2
0 = −1
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and from Eq. (6.103), we then obtain

μ1 = −� − 1
2
ζF0(cos(�0) + sin(�0)α) (6.105)

where

� ≡ 1

2

[
sin
e + sout

e

2
+ 2I∗ + ρ∗

h + ρ∗
e + sin

h + sout
h

2

]
(6.106)

is the damping rate of the solitary laser [26]. Using Eq. (6.99) and λ0 = i, Eq. (6.105)
then implies that

Re(μ1) = −� − 1
2
ζ (1 − cos(sc))(cos(�0) + sin(�0)α) (6.107)

= −� − ζ sin2
( sc

2

)
(cos(�0) + sin(�0)α).

The stability condition now is

ζ < ζH ≡ − �

sin2( sc
2 )(cos(�0) + sin(�0)α)

, (6.108)

if α sin(�0) + cos(�0) < 0. The lowest possible value for ζH is for

�0 = C = π + arctan(α) and sc = π(mod 2π).

It is given by

ζc ≡ �√
1 + α2

. (6.109)

In terms of the original parameters, the stability condition is the same as for
Eqs. (6.71)–(6.72), with �S replacing �

QD
1 , where

�S ≡ γ

2

[
sin
e + sout

e

2
+ 2I∗ + ρ∗

h + ρ∗
e + sin

h + sout
h

2

]
. (6.110)

6.7.4
Different Carrier Lifetimes τe and τh with a = O(1)

Assuming that sin
e + sout

e = O(1) and sin
h + sout

h = O(ε−1) (or equivalently = O(1)),
we now find from (6.100) that μ0 satisfies

O(1) : μ4
0 + μ3

0a + μ2
0 + μ0

a

2
= 0, (6.111)

which is analyzed in [26]. We note that ζ does not appear in Eq. (6.111) meaning
that the feedback is too weak (k = O(γ )) to have an effect in this case.
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6.7.5
Very Small Scattering Lifetime of the Holes with a = O(ε−1)

In this subsection we assume that sin
e + sout

e = O(1) and sin
h + sout

h = O(ε−2) ( or
equivalently a = O(ε−1)). We introduce a O(1) quantity a1 ≡ ε2(sin

h + sout
h ), such

that

a = a1

ε
. (6.112)

Inserting Eq. (6.112) in Eq. (6.100), we now find the following problems for μ0 and
μ1

O(ε−1) : a1μ
3
0 + μ0

a1

2
= 0, (6.113)

O(1) : 3a1μ
2
0μ1 + μ1

a1

2
+ μ4

0

−λ2
0

[−1 − (
sin
e + sout

e + I∗ + ρ∗
h

)
a1 − 2ζ cos(�0)F0a1

]
−2ζ sin(�0)F0

α

4
a1 + ζ cos(�0)F0

1

2
a1 = 0 (6.114)

where F0 is defined in Eq. (6.104). The solution of Eq. (6.113) is

μ2
0 = −1

2

and from Eq. (6.114), we then obtain

μ1 = −� − ζ

2
F0(cos(�0) + sin(�0)α) (6.115)

where

� ≡ 1
2

[
1

2a1
+ sin

e + sout
e + I∗ + ρ∗

h

]
(6.116)

is the damping rate of the ROs for the solitary laser [26]. Using Eq. (6.99) and
μ0 = i/

√
2, Eq. (6.115) implies

Re(μ1) = −� − 1

2
ζ (1 − cos(sc))(cos(�0) + sin(�0)α)

= −� − ζ sin2(
sc

2
√

2
)(cos(�0) + sin(�0)α). (6.117)

The stability conditions are the same as for Eqs. (6.71)–(6.72), with �Da replacing
�

QD
1 where

�Da ≡ γ

2

[
1

2a1
+ sin

e + sout
e + I∗ + ρ∗

h

]
. (6.118)
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Quantum-dot lasers - desynchronized
nonlinear dynamics of electrons and
holes. IEEE J. Quantum Electron., 45
(11), 1396–1403.
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7
Bifurcation Study of a Semiconductor Laser with Saturable
Absorber and Delayed Optical Feedback
Bernd Krauskopf and Jamie J. Walker

7.1
Introduction

Semiconductor lasers are a very efficient type of laser that has found numerous
applications in recent years – most prominently in optical data storage and in optical
telecommunication. Indeed, fiber-optic communication has become the method
of choice for transmitting large amounts of information, and semiconductor laser
devices are the optical light sources behind today’s telecommunication networks.
There are many reasons for the popularity of this type of laser as a light source:
semiconductor lasers are very efficient in converting electrical energy into coherent
light, very small (with cavity lengths of about 1 mm), and inexpensive and easy to
manufacture. From a more fundamental perspective, a semiconductor laser is a
damped nonlinear oscillator. It is now well known that, apart from stable emission,
semiconductor laser systems may show a wealth of other dynamics, including
different types of periodic outputs, as well as quasiperiodic and chaotic dynamics.
This type of dynamics are brought about by external influences, such as modulation
of the electrical pump current, external optical input or optical feedback. See, for
example, [1, 2] and other chapters as entry points to the extensive literature on
nonlinear laser dynamics.

The focus of this study is a semiconductor laser with saturable absorber (SLSA),
which has been shown experimentally [3] and theoretically [4, 5] to be capable
of producing self-pulsations. The underlying physical process is called passive
Q-switching, and it can be explained as follows; see also [6, 7]. The absorber in
(or adjacent to) the laser cavity acts as a store of energy that is supplied to the
semiconductor laser by an electrical pump current. Filling this energy store is a
relatively slow process (with respect to the internal timescale of the laser dynamics).
When the absorber is saturated, the laser is able to overcome its losses, and all the
stored energy is released in a very short period of time, leading to a pulse of emitted
light. The intensity drops back to zero, and the process repeats. The result is a
pulse train with a typical pulse-repetition frequency on the order of several GHz.

It is this property of the SLSA that makes it interesting for use in pulse
generation for telecommunication and for optical clocks. However, there is one

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
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drawback: the self-sustained oscillations may be quite sensitive to the influence
of external or internal noise [8]. More specifically, when the absorber is close to
being saturated, the next pulse can be triggered by even quite small amounts of
noise. The result of noise is so-called timing jitter of the pulses, meaning that
the time in between successive pulses is subject to considerable fluctuations. The
system actually displays what is known as coherence resonance: there is a noise
level that minimizes the timing jitter of the pulse train of the SLSA; see [9]. Clearly
any considerable jitter due to noise is detrimental in the mentioned applications,
because they require precise timing of pulses.

It has been shown that the timing jitter of the SLSA is due to the fact that
self-sustained pulsations occur close to a region of excitability [5, 9]. Excitability
is a well-known concept that comes originally from biology and chemistry [10].
Examples are excitation waves in reaction–diffusion systems, such as cardiac
muscle tissue and the Belousov–Zhabotinsky reaction [11]; excitability is also an
important concept in neuron and cell modeling, and it is one of the mechanisms
that may lead to the spiking of nerve cells [10, 12]. More recently, there has been a
surge of interest in excitable laser systems. Indeed, lasers with saturable absorber
are not the only class of lasers in which excitability has been found. Other laser
systems demonstrating excitability include lasers with optical injection [13, 14] or
optical feedback [15, 16], multisection DFB lasers [17], and lasers with integrated
dispersive reflectors [18]; see also [19]. Potential applications of excitable lasers
include clock recovery, where the laser acts as an optical switch that reacts only to
sufficiently large optical input, and pulse reshaping, where a dispersed input pulse
can generate a clean large-amplitude output pulse.

In this chapter, we consider the dynamics of the SLSA when part of its output
light is fed back after a given delay time τ . This laser system can be realized as is
sketched in Figure 7.1. A beam splitter (BS) diverts a part of the laser’s output into a
feedback loop. The feedback strength κ can be varied by an attenuator, and the delay
time τ is determined by a chosen length of fiber optical cable; an optical isolator
(ISO) prevents unwanted back-reflections. One motivation for studying this setup
is to understand how to operate the SLSA with delayed optical feedback in such
a way that it produces a pulse train with desired properties. The naive underlying

SLSA
BS

ISO

Fiber optical cable

Attenuator

Figure 7.1 Sketch of an SLSA (illustrated by a (white) gain
medium surrounded by a (gray) absorber medium) that is
fed back a part of its output via an external optical feedback
loop with fixed delay time, as determined by a length of
fiber optical cable; the feedback loop also includes a beam
splitter (BS), an optical isolator (ISO), and an attenuator.
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idea is the following. Suppose that the SLSA is in the excitable regime (in the
absence of feedback). When a first pulse is triggered, a part of it will travel back to
the SLSA via the feedback loop to trigger the next pulse. If this process continues
stably, then a train of pulses will be generated. Importantly, the frequency of the
pulse train is determined by the delay time τ of the external feedback loop (and
not just by the material properties of the SLSA). Hence, the SLSA with delayed
optical feedback features two additional control parameters, the delay time τ and
the feedback strength κ . The main question is how these two external parameters
influence the dynamics of the overall system, given the properties of the SLSA as
determined by its internal parameters.

To answer this question, we perform a bifurcation study of the SLSA with delayed
optical feedback as modeled by the established Yamada rate equations [20] for the
gain G, the absorption Q , and the intensity I, to which a delay term has been added.
When written in dimensionless form, one obtains the system

Ġ = γ (A − G − GI) , (7.1)

Q̇ = γ
(
B − Q − aQI

)
, (7.2)

İ = (
G − Q − 1

)
I + κI (t − τ) (7.3)

where the dot denotes derivation with respect to time. The delay term κI (t − τ),
with feedback strength κ ≥ 0 and delay time τ ≥ 0, models the feedback via the
external optical loop. Physically, the length l of the feedback loop, which is mainly
due to the fiber optical cable, determines the single fixed delay τ = l/c > 0, where
c is the speed of light.

For κ = 0, one recovers the Yamada equations – a system of three first-order
ordinary differential equations (ODEs) that describe a single-mode laser with
saturable absorber – in the form that was considered for the bifurcation study in
[5]. There are four dimensionless parameters: the pump parameter A of the gain,
the pump parameter B of the absorption, the cross-saturation coefficient a, and
the timescale ratio γ between the relaxation rates (or decay times) of gain and
absorber. The derivation of the Yamada equations can be found in [20] and also
in the chapter by Vladimirov et al., where they emerge as the limit (for small G
and Q) of Eqs. (8.22)–(8.24). Note that, due to scaling choices for variables and
parameters, these other versions of the Yamada equations differ somewhat from
the one considered here; see also [5].

For physical reasons, the parameter space of Eqs. (7.1)–(7.3) for κ = 0 is confined
to A ≥ 0, B ≥ 0, a ≥ 1, and γ ≥ 0. Furthermore, γ is a small parameter (of the
order of 10−3 –10−4), which means that gain G and absorption Q evolve on a much
slower timescale than the intensity I. Hence, the SLSA is an example of a slow–fast
system with an explicit splitting of timescales; see, for example, [21]. A complete
bifurcation analysis of Eqs. (7.1)–(7.3) for κ = 0 can be found in [5]. In particular,
just before the onset of naturally occurring self-pulsations, the dynamics of the
SLSA is excitable [5, 9]; these results are summarized in Section 7.2, and they form
the basis of what is presented here.

To address the question of how the dynamics of the SLSA is influenced by
the external feedback loop, we present a bifurcation study of Eqs. (7.1)–(7.3) for
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κ ≥ 0. Note that this means that we are dealing with a system of delay differential
equations (DDEs) with a single fixed delay. As such, it has as its phase space the
space C([−τ , 0]; R

3) of continuous functions over the delay interval [−τ , 0] with
values in (G, Q , I)-space; see, for example, [22–24]. It is this element of infinite
dimensionality that allows Eqs. (7.1)–(7.3) to show much richer dynamics than
the SLSA alone (when κ = 0). Up until only a few years ago, practical methods
for analyzing DDEs were limited to linearization around equilibria of the system
and numerical integration of the governing equations. Today, however, numerical
tools for the detection and continuation in parameters of equilibria, periodic
solutions, and their bifurcations are also available for DDEs in the form of the
packages DDE-BIFTOOL [25] and PDDE-CONT [26]; see also the recent surveys
[27, 28]. We use here the package DDE-BIFTOOL to carry out a bifurcation study
of the full DDE given by Eqs. (7.1)–(7.3). More specifically, we fix B = 5.8, a = 1.8,
γ = 0.04 throughout and consider bifurcation diagrams in the (τ , κ)-plane, where
we consider two main cases for the gain pump rate A: one where the SLSA is
off and excitable, and the other where it is is off and not excitable. The transition
between these two cases as A is changed is explained in terms of the passage
through codimension-three bifurcation points.

In light of the explicit split into slow and fast variables of the system, what is
presented here is a case study of a slow–fast system subject to delayed feedback.
This more general aspect provides a second motivation, because it may also be of
interest for other areas of application. For example, the issue of delayed feedback
or coupling also arises in the context of interacting (populations of) neuron cells,
which themselves may display dynamics on separate timescales.

The chapter is organized as follows. In Section 7.2, we summarize the results
from [5] for κ = 0. The next four sections are devoted to the study of the full DDE
for κ ≥ 0. Section 7.3 presents analytic results on basic bifurcations of equilibria.
Sections 7.4 and 7.5 are devoted to bifurcation diagrams in the (τ , κ)-plane for two
representative values of the gain pump parameter A, and Section 7.6 discusses the
transition between them via different codimension-three bifurcations. Finally, we
summarize in Section 7.7.

7.2
Bifurcation Analysis of the SLSA

The Yamada model in the form of Eqs. (7.1)–(7.3) for κ = 0 describes an SLSA in
two different geometric configurations: (i) in a sectional configuration where there
are gain and absorber sections inside the laser cavity but with the same carrier
lifetime and (ii) in a striped configuration where unpumped side regions act as the
absorber (as in Figure 7.1).

Figure 7.2 summarizes the main results of a bifurcation analysis of the Yamada
model in [5]. The main object is the two-parameter bifurcation diagram in the
(A, γ )-plane of pump parameter A of the gain and timescale separation parameter
γ , where the pump parameter B of the absorption and the cross-saturation
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Figure 7.2 Bifurcation diagram of the Ya-
mada model, Eqs. (7.1)–(7.3) for κ = 0.
Panel (a) is a sketch of the bifurcation dia-
gram of type III in the (A, γ )-plane of gain
pump parameter A and timescale separation
parameter γ ; panel (b) shows this bifurca-
tion diagram in the (A, γ )-plane as com-
puted for (B, a) = (5.8, 1.8); see Figure 7.3
for the corresponding phase portraits in

regions 1–9. Panel (c) shows the division
of the (B, a)-plane of absorption pump pa-
rameter B and cross-saturation coefficient a
into regions of bifurcation diagrams of types
I–III. Reprinted from Optics Communications
159(4-6), Selfpulsations of lasers with sat-
urable absorber: dynamics and bifurcations,
Dubbeldam and Krauskopf, pp. 325–338, ©
(1999), with permission from Elsevier.

coefficicent a have fixed values. We are concerned with the bifurcation diagram
of type III (in the notation of [5]), because it features all possible dynamics of the
SLSA. This bifurcation diagram is sketched diagrammatically in Figure 7.2a, and
it is shown in panel (b) as computed with the continuation package AUTO [29] for
(B, a) = (5.8, 1.8). The bifurcation diagram of type III is physically relevant because
it can be found for any sufficiently large values of B and a. This is illustrated
in Figure 7.2c, which shows how the (B, a)-plane is divided (by two curves DT
and DBT of two different types of degenerate Bogdanov–Takens bifurcations) into
three regions corresponding to bifurcation diagrams of types I–III. The bifurcation
diagrams of types I and II (which are not considered here) can be found in [5].

We now discuss the bifurcation diagram of type III in Figure 7.2a,b in more
detail; see, for example, [30, 31] as general references to bifurcation theory. Several
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Figure 7.3 Phase portraits corresponding to
the numbered regions 1–9 in Figure 7.2 and
regions 1–12 in Figures 7.6 and 7.9. Shown
are two-dimensional sketches in projection
onto the (G, I)-plane, where the invariant set
{I = 0} is at the bottom; the third direction

that is not shown is attracting. Black dots
are attracting equilibria; open dots are sad-
dle equilibria, and they have stable and un-
stable manifolds; black closed curves are
attracting periodic orbits, and gray closed
curves are saddle periodic orbits.

bifurcation curves divide the (A, γ )-plane into nine regions of topologically different
phase portraits, which can be found in panels 1–9 of Figure 7.3. The phase portraits
are represented as two-dimensional sketches because, after possible transients, the
dynamics takes place in a globally attracting two-dimensional surface that is close to
{G − Q − 1 = 0}; the third direction that is not shown in Figure 7.3 is consequently
attracting. Along each bifurcation curve in the (A, γ )-plane, one finds a particular
bifurcation (qualitative change of the dynamics), which is said to be of codimension
one; specifically, we encounter:

• a saddle-node bifurcation curve S, where two equilibria are created (or disappear);
an example is the transition between phase portraits 1 and 2;

• a transcritical bifurcation curve T, where an equilibrium for I = 0 changes
stability by an equilibrium moving out of (or into) the region for I > 0; an
example is the transition between phase portraits 4 and 9;

• a Hopf bifurcation curve H, where a periodic orbit (corresponding to
self-oscillations) is created (or disappears); an example is the transition between
phase portraits 2 and 3;

• a curve L along which one finds a homoclinic loop to a saddle equilibrium; a
periodic orbit bifurcates from this homoclinic loop; an example is the transition
between phase portraits 3 and 4;

• a curve SL of saddle-node bifurcation of limit cycles, where two periodic orbits
(one attracting and one of saddle type) are created (or disappear); an example is
the transition between phase portraits 4 and 5.
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The bifurcation diagram in Figure 7.2a,b is organized by a number of special
points – known as codimension-two bifurcations – where several bifurcation
curves come together. The main organizing center is a Bogdanov–Takens point
BT on the curve S (characterized by a double-zero eigenvalue of the Jacobian at
the equilibrium), from which the curves H and L emerge. The homoclinic loop
curve L changes type in a codimension-two point N (where the saddle quantity
of the equilibrium in the homoclinic loop becomes zero and changes sign); here
the bifurcating periodic orbit changes from being repelling (in region 3) to being
attracting (in region 5). From N the curve SL emerges, and it ends on the Hopf
curve H at a point DH of degenerate Hopf bifurcation; note from Figure 7.2b that
the curve SL is very close to the Hopf curve H. The homoclinic loop curve L ends
at the bottom point of the transcritical curve T (where γ = 0); notice that the curve
L follows the curve T extremely closely for γ < 0.05; see Figure 7.2b.

One conclusion from Figures 7.2 and 7.3 is that, for realistically small values of
the timescale separation parameter γ , one finds a unique sequence of bifurcations
as the gain pump parameter A is increased. Note in this context that A is the
only parameter that can be changed during an experiment. Initially, the laser is
off, which is represented in region 1 by an attractor with intensity I = 0. When
the curve S is crossed, the laser is still off in region 2, but there are now two
additional equilibria; both are saddle points in (G, Q , I)-space with I > 0. (Recall
that the missing direction in Figure 7.3 is attracting.) When A is increased further,
the homoclinic loop curve L and the transcritical curve T are practically crossed
at the same time; this marks the onset of self-pulsations, which are represented
in region 7 by an attracting periodic orbit. We remark that region 6, where one
finds coexistence of the stable equilibrium and a stable periodic orbit, is so small
that it was not found in studies that changed A for fixed small γ . Yet, region
6 must exist for topological reasons, and it was indeed found only as part of
the bifurcation diagram of type III by allowing γ to take larger values. Finally,
when A is increased even further, the Hopf bifurcation curve H is crossed. The
self-pulsations disappear, and the laser produces light with constant intensity I; in
region 9, this is represented by a globally attracting equilibrium.

It is an important realization that the SLSA is excitable in region 2, that is, for a
considerable range of the gain pump parameter A. Figure 7.4 shows the underlying
mechanism in more detail. The laser is in its off-state, and this is represented by
the globally attracting equilibrium with I = 0. In response to any sufficiently small
perturbation in the intensity I, the SLSA relaxes back to the off-state. On the other
hand, any perturbation above a certain threshold results in a large pulse before
the SLSA relaxes back to the off-state; one speaks of the excitability threshold,
and it is given in this case by the stable manifold of the saddle point that lies
close to the stable equilibrium. Physically, the perturbation in I is sufficient in
this case to overcome the losses and release the energy stored in the absorber.
The SLSA requires what is known as a refractory period (to recharge the absorber)
before the next pulse can be triggered. Note that the saddle point moves closer
to the attractor as the transcritical curve T is approached, which implies that the
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Figure 7.4 The excitable phase portrait 2 (a) gives rise
to a pulse for a sufficiently large perturbation from the
off-state (b).

excitability threshold decreases. Hence, in region 2, the SLSA becomes more and
more likely to produce noise-induced pulses as A is increased.

7.3
Equilibria of the DDE and Their Stability

If we now consider k ≥ 0, then Eqs. (7.1)–(7.3) are a system of DDEs and, as such,
difficult to study by analytical means. Nevertheless, it is possible to find explicit
formulas for some of their bifurcations. This information forms the basis of the
numerical bifurcation analysis in the next sections.

There are three equilibria, E1, E2, and E3, given by

E1 : (G, Q , I) = (A, B, 0) , (7.4)

E2, E3 : (G, Q , I) =
(

A

1 + I±
,

B

1 + aI±
, I±

)
(7.5)

where

I± = −aA + b + a + 1 − aκ − κ

2a (κ − 1)

±
√

(aA − B − a − 1 + aκ + κ)2 − 4a (κ − 1) (A − B − 1 + κ)

2a (κ − 1)
. (7.6)

The equilibrium E1 lies on the invariant plane {I = 0}; it exists for all values of the
parameters and corresponds to the nonlasing solution. The two equilibria E2 and
E3 have nonzero intensity and, since 2a (κ − 1) ≤ 0 for all κ ∈ [0, 1], we find that
I− > I+. That is, the intensity value at E2 is less than that at E3. Note that for κ = 0,
the intensity equation for I± reduces to that for the Yamada model [5].

To check the stability and bifurcations of the equilibria, we make use of the fact
that Eqs. (7.1)–(7.3) are a DDE with a single fixed delay τ > 0, which has the general
form

ẋ = f (x (t) , x (t − τ) , ψ) =: f (u, v, ψ) .

Here x (t) ∈ R
3 represents a point in the physical

(
G, Q , I

)
-space, and f is a smooth

function that depends on the parameter vector ψ . The stability of an equilibrium
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x0 is determined by the roots λ of the characteristic equation

det
(
λ(δij) − A1 − A2e−λτ

) = 0

where

A1 = ∂f (x0)

∂u
, A2 = ∂f (x0)

∂v
,

and (δij) is the identity matrix. The transcendental characteristic equation evaluated
at an equilibrium has countably infinitely many roots λi, but only finitely many
of them have a positive real part. Hence, an equilibrium is either an attractor
with infinitely many attracting directions or a saddle point with a finite number of
repelling directions and an infinite number of attracting directions; see [22–24].

For Eqs. (7.1)–(7.3), we have

A1 =
⎡
⎣−γ (1 + I) 0 −γ G

0 −γ (1 + aI) −γ aQ
I −I G − Q − 1

⎤
⎦ , A2 =

⎡
⎣0 0 0

0 0 0
0 0 κ

⎤
⎦ ,

and the characteristic equation is

0 = λ3 + [1 − G + Q + γ (2 + aI + I) − κe−λτ ]λ2 + [γ 2(1 + I + aI + aI2)

+ γ (2 − 2G + 2Q + I + aI − aGI + QI) − γ (2 + I + aI)κe−λτ ]λ

+ γ 2(1 − G + Q + I + aI + aI2 − aGI

+ QI − (1 + I + aI + aI2)κe−λτ ). (7.7)

Note that for κ = 0, this characteristic equation reduces to the eigenvalue equation
of the Yamada system [5].

While the analysis of Eq. (7.7) is generally quite difficult, we can make the
following observations.

Proposition 1 In the (τ , κ)-plane, one finds the following two local bifurcations along
horizontal lines:

(i) the locus T of transcritical bifurcations, given by

κT (A, B) = 1 − A + B (7.8)

where the equilibria E1 and E2 meet on the invariant line {I = 0}. For κ < κT both
E1 and E2 exist (in the region where I ≥ 0), and E1 is attracting. For κ >κT only
E1 exists (in the region where I ≥ 0), and it is a saddle point.

(ii) the locus S of saddle-node bifurcations, given by

κS (A, B, a) = −aA + a − B − 1 + 2
√

aAB

a − 1
(7.9)

where the equilibria E2 and E3 bifurcate. For κ < κS the system possesses just the
equilibrium E1; for κ >κS also the equilibria E2 and E3 exist, of which E2 is always
a saddle point (in the region where I ≥ 0).
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Proof. For statement (i) we consider the equilibrium E1, where (G, Q , I) = (A, B, 0),
so that E.q. (7.7) reduces to

0 = λ3 + [
1 − A + B + 2γ − κe−λτ

]
λ2 + [

γ 2 + 2γ − 2γ A

+2γ B − 2γ κe−λτ
]
λ + γ 2 (

1 − A + B − κe−λτ
)
.

The condition that λ = 0 is a root immediately gives Eq. (7.8). The existence
of E2 with I ≥ 0 for κ < κT follows from Eq. (7.6), and the stability of E1 was
checked numerically with DDE-BIFTOOL by inspecting the change of roots of the
characteristic equation across S.

For statement (ii), one needs to consider a root λ = 0 of the full characteristic
equation, that is, a root of the last term of Eq. (7.7). A simpler alternative is to
realize that a saddle-node bifurcation corresponds to the square root in Eq. (7.6)
being zero, that is,

0 = (aA − B − a − 1 + aκ + κ)2 − 4a (κ − 1) (A − B − 1 + κ) ,

and Eq. (7.9) follows. The stability of the bifurcating equilibria E2 and E3 was again
checked numerically with DDE-BIFTOOL. �

It follows from Eq. (7.8) that the transcritical locus T lies only in the physically
relevant part of the (τ , κ)-plane, meaning that κT ≥ 0, provided that

A ≤ B + 1

Note that equality above gives exactly the condition that there is a transcritical
bifurcation in the Yamada model; see Appendix A in [5]. In other words, the
transcritical locus T occurs only for κ ≥ 0 provided that A is chosen to lie to the left
of the curve T in Figure 7.2b. Similarly, Eq. (7.9) implies that the saddle-node locus
S is such that κS ≥ 0 provided that

A ≤ (−1 + a + 2
√

(a − 1)B + B)

a
.

Equality above gives exactly the condition that there is a saddle-node bifurcation
in the Yamada model; see Appendix A in [5]. Hence, the saddle-node locus S
only occurs for κS ≥ 0 provided that A is chosen from region 1, to the left of the
saddle-node locus S in Figure 7.2b. We remark that κS ≤ 1 is always satisfied,
which means that Eq. (7.6) does actually not become singular at either E2 or E3.

The equilibrium E3 may lose its stability in a Hopf bifurcation. The ansatz that
there is a purely imaginary root λ = iω of the characteristic Eq. (7.7) leads to
a complicated transcendental equation for the locus of Hopf bifurcation. As the
bifurcation diagrams in the next sections show, there is not a simple formula for this
locus, which may consist of infinitely many disjoint curves of Hopf bifurcation in the
(τ , κ)-plane. Rather than computing them numerically from Eq. (7.7), we compute
the curves of Hopf bifurcation with the continuation package DDE-BIFTOOL;
this is equivalent, because DDE-BIFTOOL also solves the characteristic equation
numerically, albeit in implicit form [25, 28].
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7.4
Bifurcation Study for Excitable SLSA

We now study the influence of the feedback loop on phase portrait 2 of the Yamada
model, where the off-state of the laser is a global attractor and the system is excitable;
see Figure 7.4. To this end, we fix the gain pump parameter at A = 6.5, to the left of
the transcritical curve in Figure 7.2b. (Recall that B = 5.8, a = 1.8 and γ = 0.04 are
fixed.) For this value of A, the transcritical locus T, but not the saddle-node locus
S, can be found in the physically relevant region where κ ≥ 0; see Proposition 1.

Figure 7.5 shows the computed bifurcation diagram of Eqs. (7.1)–(7.3) in the
(τ , κ)-plane. Apart from the horizontal curve T at κT = 1 − A + B = 0.3, the figure
shows a single, connected Hopf curve H and a homoclinic loop curve L. The
curve H has more and more self-intersections for larger values of τ ; each such
intersection is a Hopf–Hopf bifurcation point where the system possesses two
pairs of purely complex conjugate eigenvalues. The homoclinic loop curve L crosses
the Hopf curve H twice; see the enlargements in Figure 7.5b,c. The curve L then
appears to approach the line κ = 0 as τ → ∞.

Figure 7.6 shows two qualitative sketches of this bifurcation diagram in the
(τ , κ)-plane. Panel (a) is for quite small values of τ up to about 1; compare with
Figure 7.5c. Figure 7.6b is for intermediate values of τ up to about 60; compare with
Figure 7.5a. This range of the (τ , κ)-plane is most relevant from the applications
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Figure 7.5 Computed bifurcation diagram in the
(τ , κ)-plane for A = 6.5 (a); panels (b) and (c) are two suc-
cessive enlargements. Shown are the transcritical curve T, a
Hopf curve H, and a homoclinic loop curve L.
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Figure 7.6 Sketches of the bifurcation diagram in the
(τ , κ)-plane for A = 6.5; panel (a) is up to small and panel
(b) up to an intermediate value of τ . The gray curves SL are
loci of saddle-node of limit cycle bifurcations; numbered re-
gions correspond to phase portraits in Figure 7.3.

point of view, because we are interested in self-pulsations of high frequency (hence,
τ should not be too large). The new features in Figure 7.6 are (gray) curves SL
of saddle-node bifurcation of limit cycles: one emanates from a codimension-two
point N on the curve L where the saddle is neutral, and the other curves SL emanate
from degenerate Hopf points DH on the Hopf curve H. At each such point, the
Hopf bifurcation changes criticality, meaning that the bifurcating periodic orbit
changes form being attracting to being of saddle type. Because it is quite difficult to
follow a saddle-node bifurcation of limit cycles in a DDE, we verified the positions of
the curves SL with careful numerical simulations of Eqs. (7.1)–(7.3). We also found
that the Hopf bifurcation curve H and the homoclinic loop curve L both change
criticality very close to where they cross for lower values of κ ; in fact, this happens
practically at their intersection point within the accuracy of our investigation, and
no additional curve SL could be found.

The sketched bifurcation curves in Figure 7.6 constitute a conjectured partial
bifurcation diagram in the shown part of the (τ , κ)-plane; it is complete enough to
allow us to identify the numbered regions with different phase portraits that can
be found in Figure 7.3. Notice that region 2 of excitable dynamics is immediately
adjacent to the line {κ = 0}; this is expected for our choice of A because the DDE
for κ > 0 is a regular perturbation of the ODE for κ = 0. What is more, for small τ

we find a bifurcation structure that is very much like that in the (A, γ )-plane of type
III; compare Figure 7.6a with Figure 7.2a. In particular, phase portraits 2–9 (that
is, all phase portraits of the Yamada system with the exception of that in region 1)
can be found in the corresponding regions. In other words, near the limit τ = 0
the delay time τ and the feedback strength κ unfold the dynamics in a similar way
as gain pump parameter A and timescale separation parameter γ when τ = κ = 0.
Already for intermediate values of τ as in Figure 7.6b, on the other hand, we find a
bifurcation structure that is more complicated, with additional dynamics in regions
10–12. Note from Figure 7.3 that these new phase portraits can still be drawn in a
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two-dimensional plane. All these phase portraits have stable oscillations; their new
feature is the existence of additional nested periodic orbits.

For intermediate values of the feedback strength around κ = 0.2, one finds a
characteristic transition as the delay time τ is increased; see Figure 7.3 for the
phase portraits that are encountered. For small τ in region 2, the laser is excitable.
When the curve H is crossed into region 3 as τ is increased, a periodic orbit of
saddle type is created around the bifurcating equilibrium, which is now stable.
Hence, the laser is bistable: it is still excitable when it is in the off-state with I = 0,
but for suitable initial conditions it may also emit light at the constant intensity
value of the stable equilibrium with I > 0. When the curve L is crossed and region
4 is entered, the unstable periodic orbit disappears; the system is still bistable but
no longer excitable: any sufficiently large perturbation of the off-state now brings
the laser into the basin of attraction of the stable equilibrium with I > 0. When τ is
increased further, the curve H is crossed a second time. Now a stable periodic orbit
is born along H so that in region 6 we now find bistability between the off-state
and self-sustained oscillations. As τ is increased even further, the Hopf bifurcation
curve H is crossed several more times; this leads to the creation of more periodic
orbits, which are alternatingly attracting and of saddle type. As Figure 7.5a clearly
shows, the bifurcation diagram becomes increasingly complicated for even larger
values of τ – so much so that it becomes impractical to map out all regions of
different dynamics.

An important new aspect of the bifurcation diagram in Figure 7.6b is the fact
that region 6, where one finds bistability between the off-state and self-pulsations,
is now so large that it becomes experimentally accessible. It can be reached, for
example, from region 2 by increasing κ for a fixed intermediate value of the delay
time τ , or from region 4 by increasing τ for suitable fixed κ . The relevant region in
the (τ , κ)-plane is shown enlarged in Figure 7.7a. Panel (b) shows the period of the
attracting periodic orbit 
 as it is continued in the direction of decreasing κ from
the point p on the Hopf curve H. As is to be expected, the period of 
 increases and
diverges to infinity as the homoclinic loop curve L is approached. Panels (c1)–(c3)
of Figure 7.7 show the response of the system to a sufficiently large perturbation
(above the stable manifold of the saddle point in region 6). After an initial large
pulse, the system settles down to the attracting periodic orbit and, hence, produces
regular oscillations. As the curve L is approached, these oscillations take the
form of self-pulsations with clearly defined pulses. Indeed, the interspike time
(which is the period of the periodic orbit) increases as κ is decreased toward the
curve L.

7.5
Bifurcation Study for Nonexcitable SLSA

We now consider the influence of the feedback loop on phase portrait 1 of the
Yamada model, where the off-state of the laser is a global attractor, but the system is
not excitable; see Figure 7.3. Figure 7.8a shows the relevant computed bifurcation
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Figure 7.7 Panel (a) shows a region of the (τ , κ)-plane with
transition to region 6. Panel (b) shows the period of the pe-
riodic orbit 
 in region 6 as continued from the point p of
the Hopf curve H toward the homoclinic loop curve L. Pan-
els (c1)–(c3) show associated time series after a sufficiently
large perturbation from the stable off-state.

diagram of Eqs. (7.1)–(7.3) in the (τ , κ)-plane for A = 5.9, a value somewhat to
the left of the saddle-node curve S in Figure 7.2b. (Again, B = 5.8, a = 1.8, and
γ = 0.04 are fixed.) Hence, according to Proposition 1, we find the saddle-node
locus S as the horizontal line at κS ≈ 0.09578. The line S bounds a horizontal strip
near κ = 0, where one finds phase portrait 1 for any τ ; again, this is to be expected
from the fact that the DDE is a regular perturbation of the Yamada system. In
contrast to the case for A = 6.5 in Figure 7.5a, for A = 5.9, the locus of Hopf
bifurcation is no longer a single curve. Figure 7.8a actually shows several disjoint
Hopf curves that intersect in numerous double Hopf points; along the shown
curves H, one finds a Hopf bifurcation at the equilibrium E3. Note further that
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Figure 7.8 Computed bifurcation diagram in the
(τ , κ)-plane for A = 5.9 (a) and an enlargement near a
Bogdanov-Takens point BT and a saddle-node Hopf point
SH (b). Shown are the saddle-node curve S, Hopf curves H,
and a homoclinic loop curve L. Panel (c) shows the imagi-
nary part ω along the Hopf curve that ends at the point BT.

the transcritical locus T no longer intersects the Hopf curves H; it lies at κT = 0.9,
which is outside the range shown in Figure 7.8a.

Another new feature of Figure 7.8a are codimension-two points on the
saddle-node line S. There are a Bogdanov–Takens point BT (where the system has
a double-zero eigenvalue) and two codimension-two saddle-node Hopf points SH
(where there is a zero eigenvalue and a complex conjugate pair of purely imaginary
eigenvalues) [30, 31]. These points are end points of shown Hopf curves. Panel (c)
shows that the imaginary part ω along the Hopf curve H decreases to zero as the
point BT is approached, which is evidence for the fact that one is indeed dealing
with a Bogdanov–Takens point. As was also checked, the imaginary part ω along
the respective Hopf curves tends to a nonzero limit at the points SH. Notice also
that the homoclinic loop curve L ends at the point BT; see Figure 7.8b.

Figure 7.9 shows a qualitative sketch of the partial bifurcation diagram for
A = 5.9. As before, we added a number of bifurcation curves that are very difficult
to continue directly in the DDE, but must exist near the known codimension-
two bifurcation points; existence and positions of these curves was again
verified by careful numerical simulations of Eqs. (7.1)–(7.3). There are two
(gray) curves SL of saddle-node bifurcation of limit cycles emanating from
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Figure 7.9 Sketch of the bifurcation diagram in the
(τ , κ)-plane for A = 5.9. The gray curves SL are loci of
saddle-node of limit cycle bifurcations, and the gray curve
L is another curve of homoclinic loops; for phase portaits in
numbered regions, see Figure 7.3.

codimension-two degenerate Hopf points DH and one (gray) curve SL emanating
from a codimension-two Hopf–Hopf point HH. Furthermore, we also added an
additional homoclinic loop curve L that connects the two points SH and bounds a
second region where one finds the excitable phase portrait 2.

Figure 7.9 shows what additional bifurcation curves are involved in the interaction
of the three left-most Hopf curves of the bifurcation diagram in Figure 7.8a. Indeed,
many more additional Hopf curves and codimension-two points HH exist, meaning
that the sketch in Figure 7.9 does not give a complete division of the (τ , κ)-plane
into regions of different dynamics. Nevertheless, it is complete enough to allow us
to identify the regions where one finds portraits 1–6 and 10 from Figure 7.3.

7.6
Dependence of the Bifurcation Diagram on the Gain Pump Parameter

The two bifurcation diagrams in the (τ , κ)-plane for A = 5.9 and A = 6.5, in
Figures 7.8a and 7.5a, respectively, are clearly qualitatively different. Yet, since they
depend only on the gain pump parameter A, changing A from A = 5.9 to A = 6.5
(or vice versa) transforms the two bifurcation diagrams into one another. We now
describe briefly how this happens via the transition through codimension-three
bifurcations. Here we take a geometric approach that is supported by numerical
computation with DDE-BIFTOOL.

The overall features of this transition when A is increased through the interval
A ∈ [5.9, 6.5] can be described as follows:

• The different Hopf curves for A = 5.9 merge into the single Hopf curve for
A = 6.5.

• The codimension-two points BT and SH disappear toward infinite values of τ .
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• The curve S disappears when A reaches the curve S in Figure 7.2b at A =
(−1 + a + 2

√
(a − 1)B + B))/a.

• The transcritical curve T moves down and starts to intersect the curve H.

We concentrate here on the bifurcations of the Hopf curves as the main
ingredients in the transition for A ∈ [5.9, 6.5]. To this end, we now consider all
Hopf curves for A = 5.9 – including those where the bifurcation takes place at E2,
which are not shown in Figures 7.8 and 7.9.

As A is increased, one finds values of A where the connectivity between different
branches of Hopf curves in the (τ , κ)-plane changes locally; we speak of a saddle
transition of Hopf curves. Figure 7.10 shows two examples of this bifurcation, which
is of codimension three. More specifically, Figure 7.10a1, a2 shows the bifurcation
diagram before and after a saddle transition of Hopf curves near the points BT and
SH; the inset panels show the purely imaginary parts of the bifurcating eigenvalues
along the Hopf curves. Notice how two separate Hopf bifurcation curves that end
at BT and SH, respectively, connect differently, creating a direct connection from
BT to SH. Figure 7.10b1,b2 shows a saddle transition of Hopf curves near the
point SH for larger values of τ . The result is again a different connectivity of Hopf
curves H near the point SH. A saddle transition of Hopf curves is a bifurcation
of codimension three because it changes the topological type of the bifurcation
diagram in the (τ , κ)-plane at a single discrete value of A. This bifurcation has
been found in transitions between different two-parameter bifurcation diagrams
in other laser systems; see, for example, [32, 33]. When seen in (τ , κ , A)-space, a
saddle transition of Hopf curves corresponds to the transition of a plane given by
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Figure 7.11 Sketch of the transition through a
codimension-three degenerate Hopf–Hopf point DHH,
where a loop in a Hopf curve H with a point HH trans-
forms into a lobe with a point DH.

A = const through a saddle point of the two-dimensional surface H(τ , κ) of Hopf
bifurcation; here, a saddle point is given by the condition that grad H = 0 and the
determinant of the Hessian is negative.

After the saddle transitions of Hopf curves in Figure 7.10, the codimension-two
points BT and SH are ‘‘free to move’’ toward larger values of τ as A is increased
further. In the process they ‘‘drag’’ the other bifurcation curves with them toward
larger values of τ . In this way, the homoclinic loop curve L ending at BT (not shown
in Figure 7.10) becomes the lower boundary of the bifurcation diagram; compare
with Figure 7.5a. With increasing A, the saddle-node curve S moves down in κ

and finally disappears at A = (−1 + a + 2
√

(a − 1)B + B)/a into the (unphysical)
region of negative κ .

Relating the saddle transition in Figure 7.10b1,b2 back to the larger picture in
Figure 7.9 shows that this transition results in a Hopf curve H with a loop, where
the self-intersection point is the sketched Hopf–Hopf point. Investigation with
DDE-BIFTOOL shows that, when A is increased beyond the value 5.9312, this
loop changes into the ‘‘lobe’’ with a point DH that one finds in Figure 7.6b. The
mechanism is the transition through a codimension-three degenerate Hopf–Hopf
bifurcation point DHH, and it is sketched in Figure 7.11. At the moment of
bifurcation in panel (b), the Hopf curve has a cusp, which is the point DHH.

7.7
Conclusions

We presented a bifurcation study of the influence of an optical feedback loop
on an SLSA as modeled by the Yamada ODE. The resulting DDE model was
studied by means of linear stability analysis of its equilibria in combination
with a bifurcation analysis with the continuation package DDE-BIFTOOL. More
specifically, bifurcation diagrams in the plane of delay time τ and feedback
strength κ were presented for two relevant choices of the gain pump parameter A.
The transition of the bifurcation diagram in the (τ , κ)-plane with A was discussed
in terms of transitions through certain codimension-three bifurcations.
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The work presented here can be seen as a case study of how a laser system
with delay can be investigated with tools from bifurcation theory and, in partic-
ular, with numerical continuation as implemented, for example, in the package
DDE-BIFTOOL. The physical motivation for this work is the wish to use the
additional control parameters τ and κ to ensure reliable self-pulsations of the
overall system with small timing jitter. To this end, the bifurcation diagram in the
(τ , κ)-plane was considered for a small range of the gain pump parameter A near
the region where the SLSA without delay is excitable. In this way, we identified
large and experimentally accessible additional regions where the SLSA produces a
stable train of pulses in the presence of the optical feedback loop.

Indeed, this study is far from complete and there are several directions for future
research. First, an investigation of the influence of noise on dynamics of the SLSA
with delay would be the logical next step to determine the timing properties of the
corresponding pulse trains under more realistic conditions. Second, we restricted
our attention to a relatively small range of the delay time τ . As a result, the phase
portraits we found for the SLSA with delay are all quite special in that they can be
drawn by planar phase portraits, where the missing (infinitely many) directions are
strongly attracting. A more wide-ranging bifurcation analysis, in dependence of A
as well as on other parameters of the Yamada system, would be expected to result
in the discovery of more complicated dynamics.
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8
Modeling of Passively Mode-Locked Semiconductor Lasers
Andrei G. Vladimirov, Dmitrii Rachinskii, and Matthias Wolfrum

8.1
Introduction

Short optical pulses have numerous technological applications including high bit
rate communications, optical tomography, spectroscopic measurements, material
processing, frequency standards, and so forth. A powerful method for generating
such kind of pulses is based on the so-called mode-locking (ML) technique [1].
A mode-locked laser operates simultaneously in a large number of longitudinal
modes with equal intermode frequency spacings and a fixed relation between the
phases of the modes. This laser usually emits a sequence of short pulses with
a repetition period close to the cavity round trip time and minimum possible
pulse duration inversely proportional to the number of locked modes. Different
approaches have been developed to achieve ML in lasers. Active ML is based on
application of an external modulation with the period close to the laser cavity
round trip time [2, 3]. An alternative technique known as passive ML [4–6] does not
require any external source of radiofrequency modulation. In this case, the losses
are modulated by the ML pulse itself because of the presence of an additional
saturable absorber medium in the cavity. When propagating in the laser cavity, an
intensive light pulse bleaches the saturable absorber and, therefore, experiences a
reduced saturable loss as compared to regimes with ‘‘unlocked’’ modes.

Semiconductor ML lasers are compact, low-cost, and reliable sources of short
optical pulses with high repetition rates suitable for applications in telecommunica-
tion technology [7, 8]. In monolithic passively ML semiconductor lasers, saturable
absorption is implemented by applying a reverse bias to a short additional laser
section built from the same material as the gain section. Since rapid development of
the technology requires a constant improvement of the ML characteristics, different
techniques are used to improve the quality of ML pulses: addition of passive and
spectral filtering (DBR) sections into the laser cavity, application of periodic external
modulations (hybrid ML [7, 9]), and so forth. Nowadays, monolithic quantum dot
mode-locked lasers [10–14] demonstrate a number of important advantages as
compared to standard quantum well devices and, therefore, have become one of
the most promising systems for various applications.

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Analytical theory of ML in lasers was first developed by Haus [1]. Assuming that
the gain and losses per round trip are very small such that the pulse circulating in
the cavity changes only slightly per cavity round trip, he derived a partial differential
equation for the evolution of the electric field amplitude in a mode-locked laser.
Within the framework of this approach, Haus considered two practically important
limiting situations: the case of fast saturable absorber [6] and the case of slow
saturable absorber [5]. Although the Haus theory has proved to be a very efficient
tool for modeling of solid state, fiber, and some other types of lasers, the applicability
of this theory to ML in semiconductor lasers is rather limited. This is mainly because
the small gain and loss approximation does not hold there. Most theoretical studies
on ML in these lasers are based on time-consuming numerical simulations of
traveling wave equations supplied with proper boundary conditions, for example,
[15–17]. In this chapter, we describe an alternative, relatively simple, approach to
a theoretical analysis of ML in semiconductor lasers, without invoking the small
gain-and-loss approximation. Our model is based on a set of delay differential
equations (DDE) proposed in [18–20] and allows for not only fast and easy
numerical analysis of ML regimes but also their analytical study. In this chapter, we
summarize some results of numerical and analytical analysis of this DDE model.

The chapter is organized as follows. In Section 8.2 a set of three DDEs [18–20]
for a passively mode-locked semiconductor laser is derived from the traveling wave
equations, which govern spatiotemporal evolution of the electric field amplitude
and the carrier densities in the gain and absorber sections. The derivation is
performed under the assumption of unidirectional lasing in a ring cavity and
Lorentzian line shape of the spectral filtering. Section 8.3 is devoted to numerical
analysis of the DDE model. Here, the bifurcations responsible for the appearance
and break-up of ML solutions are described in detail. The next two sections are
devoted to the analytical analysis of different ML regimes in the limit when spectral
filtering in the cavity is very broad [20]. The connection between the DDE model
and classical approaches developed by New [4] and Haus [5] are discussed in Section
8.4, where a 3-D map describing the transformation of the ML pulse characteristics
after a complete round trip in the cavity is constructed under the slow saturable
absorber approximation. Analytical stability analysis of the fundamental ML regime
with respect to the Q-switching instability is discussed in Section 8.5 [21], where
we use a variational approach for estimation of the characteristics and domains of
stability of ML regimes. Finally, in Section 8.6, some modifications and extensions
of the DDE ML model are discussed.

8.2
Derivation of the Model Equations

In this section, we derive a system of DDEs for the dynamics of an ML laser with
a ring cavity, using the so-called lumped element method [22]. We assume that
one of the two counter propagating waves in the laser cavity is suppressed, hence
the laser generation is unidirectional. The laser is divided along its longitudinal
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Figure 8.1 Schematic presentation of a ring ML laser (uni-
directional lasing) with gain, absorber (SA), and passive
sections.

direction z into four sections (Figure 8.1) containing absorber and gain media as
well as passive media in the first and the last sections. An additional spectral filter
limits the bandwidth of the emitted light. In the first step, we employ in each
section the so-called traveling wave model [16, 23, 24]

∂Ek (t, z)

∂z
+ 1

v

∂Ek (t, z)

∂t
= gk�k

2
(1 − iαk)

[
Nk (t, z) − Ntr

k

]
Ek (t, z) (8.1)

∂Nk (t, z)

∂t
= Jk − γkNk (t, z) − vgk�k

[
Nk (t, z) − Ntr

k

] |Ek (t, z)|2 , (8.2)

describing the slow evolution of the complex electric field amplitude envelope
Ek (t, z) and the real carrier density Nk (z, t) within the k-th section z ∈ [zk, zk+1],
k = 1, . . . , 4. The light group velocity v is assumed to be constant and equal in
all sections. The line-width enhancement factor αk, the differential gain (loss) gk,
the transverse modal fill factor �k, the carrier density at transparency Ntr

k , and the
carrier relaxation rate γk depend on z; assume different values in the gain and
absorber section; and vanish in the passive sections. The pump parameter Jk is
proportional to the injection current and is different from zero only in the gain
section. By a lumped element approach, the gain dispersion of the active medium
and all other spectral filtering components (e.g. distributed Bragg reflectors) are
introduced by the boundary condition

Ê1 (ω, z1) = f̂ (ω) Ê4 (ω, z1 + L) ,

where Ê is the Fourier transformed field, f̂ (ω) represents the line shape of the
spectral filter, and L is the total length of the laser. Similarly, nonresonant losses
and out-coupling are introduced by interface conditions

Ek+1(t, zk+1) = √
κk+1Ek(t, zk+1), k = 1, . . . , 3.

In a passive section, we set Nk ≡ Ntr
k = 0, and the evolution reduces to

∂Ek (t, z)

∂z
+ 1

v

∂Ek (t, z)

∂t
= 0. (8.3)



186 8 Modeling of Passively Mode-Locked Semiconductor Lasers

Together with the coordinate change (t, z) → (τ , ζ ), where τ = t − z/v is the
delayed time and ζ = z/v is a normalized spatial coordinate, we transform Eqs.
(8.1) and (8.2) to the dimensionless form

∂Ak (τ , ζ )

∂ζ
= 1

2
(1 − iαk) nk (τ , ζ ) Ak (τ , ζ ) , (8.4)

for the rescaled field A (τ , ζ ) = E (t, z)
√

vgg�g and

∂ng (τ , ζ )

∂τ
= jg − γgng (τ , ζ ) − ng (τ , z) |A (τ , ζ )|2 , (8.5)

∂nq (τ , ζ )

∂τ
= −jq − γqnq (τ , ζ ) − s′nq (τ , ζ ) |A (τ , ζ )|2 , (8.6)

for the carrier densities ng,q (τ , ζ ) = vgg,q�g,q

[
Ng,q (t, z) − Ntr

g,q

]
in the gain and

absorber sections, respectively. Further parameters are jg = vgg�g

(
Jg − γgNtr

g

)
,

jq = vgq�qγqNtr
q , and s′ = (gq�q)/(gg�g) measuring the ratio of saturation intensities

in the gain and absorber sections. The subscripts g and q relate to the parameter
values in the corresponding sections. For the passive sections, Eq. (8.4) simplifies
now to

∂A (τ , ζ )

∂ζ
= 0. (8.7)

Solving Eqs. (8.4)–(8.7) and using Eq. (8.2), one can now obtain explicit expressions
for the evolution of the electric field envelope during its propagation through each
of the four laser sections. According to Eq. (8.7), the passage of the electric field
through the two passive sections leads to the simple relations

A1 (τ , ζ2) = A1 (τ , ζ1) , A4 (τ , ζ1 + L/ν) = √
κ3A3 (τ , ζ4) (8.8)

where the losses κk concentrated at the interfaces ζk = zk/v have already been
included for the transition through the interface ζ3. The evolution of the electric
field envelope through the gain and absorber sections together with the losses at
the corresponding interfaces is given by

A3 (τ , ζ4) = √
κ3e

1−iαg
2 G(τ )A2 (τ , ζ3) , A2 (τ , ζ3) = √

κ2e− 1−iαq
2 Q(τ )A1 (τ , ζ2) ,

(8.9)

obtained by integrating Eq. (8.4). Here, the dimensionless quantities

G (τ ) =
∫ ζ4

ζ3

ng (τ , ζ ) dζ , Q (τ ) = −
∫ ζ3

ζ2

nq (τ , ζ ) dζ ,

describe the total saturable gain and loss introduced by the corresponding sections
[25, 26]. Integrating Eqs. (8.5) and (8.6) with respect to ζ from ζ3 to ζ4 and from ζ2

to ζ3, respectively, and using the relation∫ ζ3,4

ζ2,3

nq,g (ζ , τ)
∣∣A2,3 (τ , ζ )

∣∣2
dζ = − ∣∣A2,3

(
ζ3,4, τ

)∣∣2 + ∣∣A2,3
(
ζ2,3, τ

)∣∣2
,
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which follows from Eq. (8.4), we obtain equations for the evolution of gain and
loss,

∂τ G (τ ) = g0 − γgG (τ ) − |A (τ , ζ4)|2 + |A (τ , ζ3)|2 (8.10)

∂τ Q (τ ) = q0 − γqQ (τ ) + s′ |A (τ , ζ3)|2 − s′ |A (τ , ζ2)|2 . (8.11)

Here, g0 = ∫ ζ4
ζ3

jgdζ and q0 = ∫ ζ3
ζ2

jqdζ are the total unsaturated gain and loss,
respectively. Finally, for the transition through the interface at ζ1, we have to invoke
in addition to the nonresonant losses κ1, the spectral filtering (Eq. (8.2)) and the
periodic boundary conditions that have to be rewritten in the coordinates τ , ζ as
A4 (τ , ζ1 + L/ν) = A1 (τ + T , ζ1), where T = L/v is the cold cavity round trip time.
Expressing the filtering in the time domain we obtain

A1 (τ + T , ζ1) = √
κ1

∫ τ

−∞
f (τ − θ) A4 (θ , ζ1 + L/ν) dθ , (8.12)

where f (τ ) is assumed to decay sufficiently fast as τ → ∞ to ensure the con-
vergence of the integral in the right-hand side of Eq. (8.12). Wrapping up all
transformations (Eqs. (8.8), (8.9), and (8.12)), we obtain the transformation of the
electric field amplitude A (τ ) ≡ A1 (τ , ζ1) after a complete cavity round trip,

A (τ + T) =
∫ τ

−∞
f (τ − θ) R (θ) A (θ) dθ , (8.13)

where

R (τ ) = √
κe(1−iαg)G(τ )/2−(1−iαq)Q(τ )/2. (8.14)

Here, the attenuation factor κ = κ1κ2κ3κ4 < 1 describes the total linear nonresonant
intensity loss per cavity round trip.

Equation (8.13) describes the evolution of the electric field envelope in a ring
cavity laser with an arbitrary spectral filter line shape defined by the response
function f (τ ). If there is no spectral filtering, this function becomes the delta
function, f (τ ) = δ (τ ), and Eq. (8.13) transforms to the map

A (τ + T) = R (τ ) A (τ ) . (8.15)

This map is similar to the Ikeda map, which was proposed for modeling multi-
stability and chaos in a ring cavity with a nonlinear medium [27, 28]. Eq. (8.15)
describes the time evolution of the electric field envelope A in a laser without
spectral filtering, that is, in the approximation studied by New [4]. The solution of
this equation corresponding to the ML regime is a T-periodic sequence of delta
functions, |A (τ )|2 = 
P

∑∞
n=−∞ δ (τ − nT) where 
P is the pulse energy. This

solution is characterized by infinite bandwidth and infinitely short ML pulses.
Now let us assume that the spectral filtering has a Lorentzian line shape. In this

case, the response function has the form f (τ ) = γ exp [(−γ + i�) τ ] and Eq. (8.13)
can be replaced by a DDE with the delay time given by the cold cavity round trip
time T . After the change of the variable A → A exp (i�τ), this DDE takes the form

γ −1∂τ A (τ ) + A (τ ) = √
κe(1−iαg)G(τ−T)/2−(1−iαq)Q(τ−T)/2−iϕA (τ − T) , (8.16)
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with ϕ = �T . Equations (8.8) and (8.9) can be used to express the fields A2 (τ , ζ2),
A3 (τ , ζ3), and A4 (τ , ζ4) in terms of the field A (τ ) = A1 (τ , ζ1) in Eqs. (8.10) and
(8.11). The resulting equations describing the evolution of the saturable gain and
loss read

∂τ G (τ ) = g0 − γgG (τ ) − κ1κ2κ3e−Q(τ )
(
eG(τ ) − 1

) |A (τ )|2 , (8.17)

∂τ Q (τ ) = q0 − γqQ (τ ) − s′κ1κ2
(
1 − e−Q(τ )

) |A (τ )|2 . (8.18)

The system of DDEs (Eqs. (8.16)–(8.18)) establish a closed delay differential model
of a ring cavity ML laser with a Lorentzian filter, which that is the central subject
of this chapter.

We note that the approach used above to derive the model (Eqs. (8.16)–(8.18))
is similar to that proposed by Gurevich and Khanin to study a passively ML solid
state laser [29–31]. However, the delay differential model of these authors has a
singularity for zero electric field. Therefore, Eqs. (8.16)–(8.18) are more suitable
for studying the limit of a slow saturable absorber as the electric field envelope A
is close to zero between the ML pulses in this limit. After a proper rescaling of the
electric field envelope, Eqs. (8.16)–(8.18) can be rewritten in the form

γ −1∂tA + A = √
κe(1−iαg)G(t−T)/2−(1−iαq)Q(t−T)/2−iϕA (t − T) (8.19)

∂tG = g0 − γgG − e−Q
(
eG − 1

) |A|2 (8.20)

∂tQ = q0 − γqQ − s
(
1 − e−Q

) |A|2 . (8.21)

Here, s = s′/κ2 is the effective saturation parameter, which is inversely proportional
to the linear nonresonant losses κ3 introduced at z = z3 between the gain and the
absorber sections. In order to simplify the notations, we have replaced the time
variable τ with t. In what follows, we analyze numerically and analytically ML
regimes in the delay differential model (Eqs. (8.19)–(8.21)).

The presence of the delayed terms in the right-hand side of Eq. (8.19) reflects the
fact that the model Eqs. (8.19)–(8.21) describe a multimode laser. At the end of this
paragraph, we consider a reduction of these equations to the model of a single-mode
laser with a saturable absorber. When the electric field envelope changes sufficiently
slow in time, the first term γ −1∂tA in Eq. (8.19) can be neglected. Multiplying the
resulting equation by its complex conjugate, we obtain I(t + T) = κeG(t)−Q(t)I(t)
where I = |A|2 is the optical field power. Now, assuming that the characteristic
time scale of the optical field power variation is much smaller than the round trip
time T (this is a good approximation for a single- mode generation regime) and
using the approximation I (t + T) ≈ I(t) + T∂tI(t), we arrive at the system

T∂tI = −I + eG−Q+ln κI (8.22)

∂tG = g0 − γgG − e−Q (eG − 1)I (8.23)

∂tQ = q0 − γqQ − s(1 − e−Q )I (8.24)

of ordinary differential equations. Note that in the limit of small G, Q , and ln κ ,
this system transforms to a standard model of a single-mode class B laser with
a saturable absorber [32–35] in which all the exponential functions are replaced
with their linear approximations. Both models assume that atomic polarization
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can be adiabatically eliminated. In [36], dynamical regimes of laser generation in a
laser with saturable absorber were studied without adiabatic elimination of atomic
polarization. In particular, the normal form obtained in [36] describes the local
dynamics near a bifurcation point with the zero eigenvalue of multiplicity three.
In particular, it has been shown that an attractor of Lorenz type can exist near this
bifurcation point.

The stationary solution of Eqs. (8.22)–(8.24) with a nonzero optical field intensity
is defined by the equations κeG−Q = 1, g0 = γgG + e−Q (eG − 1)I, and q0 = γqQ +
s(1 − e−Q )I. This solution can lose its stability via an Andronov–Hopf bifurcation
leading to the so-called Q-switching regime with periodically oscillating optical
field intensity. A similar scenario (associated, however, with the destabilization
of the ML regime, rather than a stationary generation regime) is observed in
ML lasers, where a bifurcation of the ML state leads to the Q-switched ML
regime characterized by a sequence of short optical pulses with the peak intensity
modulated by a low-frequency envelope. The Q-switching frequency �R of the
pulse amplitude modulation is usually much smaller than the pulse repetition
frequency, �R 	 2π/T , with a typical value of a few gigahertz for monolithic ML
semiconductor lasers. The Q-switching instability of the stationary laser generation
regime and that of the ML regime are related. However, further analysis shows
that the Andronov–Hopf bifurcation boundary of the stationary solution of Eqs.
(8.22)–(8.24) does not provide an accurate estimate of the Q-switching instability
boundary of the ML regime. A numerical evidence of this fact is presented below,
Figure 8.11. A detailed theoretical analysis of Q-switching behavior in single- mode
lasers with saturable absorbers can be found in [33, 34, 37, 38]. Bifurcation analysis
of a model of such kind of lasers subjected to a delayed feedback is discussed in
Chapter 7 of this book by B. Krauskopf and J. J. Walker.

8.3
Numerical Results

In the remaining part of this chapter, we use the DDE model (Eqs. (8.19)–(8.21))
for a detailed investigation of the dynamical regimes in an ML laser. An important
advantage of this model is that it allows for the application of efficient algorithms
for simulation and numerical bifurcation analysis that have been developed for
systems of DDEs, in particular, the software package DDEBIFTOOL [39]. In this
section, we present results based on such numerical investigations. In addition, we
present in Sections 8.4, and 8.5 several analytical results concerning the ML pulse
stability in the limit γ T → ∞.

The simplest stationary solution of Eqs. (8.19)–(8.21) corresponds to zero laser
intensity (laser off):

A = 0, G = g0/γg , Q = q0/γq. (8.25)

Additionally, there also exist cw solutions of the form A (τ ) = A0eiγωt with nonzero
intensity |A0|2. Their intensities and frequency shifts ω can be found by solving the
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equations (cf. Eq. (8.19))

κeG−Q − 1 − ω2 = 0 (8.26)

ω + tan
[
γ Tω + (

αgG − αqQ
)
/2 − ϕ

] = 0 (8.27)

where expressions for G and Q in terms of the laser intensity |A0|2 can be
found by equating to zero the right-hand sides of Eqs. (8.20) and (8.21). The
transcendental Eqs. (8.26) and (8.27) have multiple solutions, each corresponding
to a certain longitudinal mode. In the limit γ T → ∞, the frequency interval
between two neighboring cw solutions coincides with the cold cavity intermode
frequency spacing δν = 1/T . The value of the linear gain parameter g0 where a cw
solution with the frequency detuning ωk bifurcates from the zero intensity solution
(Eq. (8.25)) is given by g0 = γg

[
q0/γq − ln κ + ln

(
1 + ω2

k

)]
. Let the cw solution

with ω = ω0 have minimal detuning |ω0| from the central point of the Lorentzian
spectral filtering profile. This solution, having minimal effective losses, bifurcates
from the solution (Eq. (8.25)) at the linear threshold point:

gTh
0 = γg

[
q0/γq − ln κ + ln

(
1 + ω2

0

)]
. (8.28)

All other cw solutions with |ωk| > |ω0| appear at larger threshold currents and,
therefore, bifurcate from the zero intensity solution when it is already unstable.
Hence, in general, only a single cw solution can be stable just above the bifurcation.
Some of these unstable cw solutions can, however, become stable with increasing
pump parameter g0 [40].
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Figure 8.2 Andronov–Hopf bifurcations of the cw solution
with ω = 0. Parameter values: T = 25 ps, γ = 25, αg,q = 0,
s = 25, γg = 1 ns, γq = 10 ps, and κ = 0.5.
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The results of a numerical linear stability analysis of the cw solution with
ω = ω0 = 0 in the two parameters (g0, q0) are presented in Figure 8.2. The curves
Hn indicate Andronov–Hopf bifurcations leading to the regimes with pulsating
laser intensity with the period close to T/n. Thus, at the curve H1 the fundamental
ML solution with the pulse repetition frequency close to �1 = 2π/T appears.
The curves Hn with n = 2, 3, 4 denote the bifurcations leading to harmonic ML
solutions with the repetition rates close to n�1. Finally, the curve QS corresponds
to an Andronov–Hopf bifurcation with a much smaller frequency associated with
Q-switching.

Starting from the Andronov–Hopf bifurcation curves, we computed branches
of solutions with periodic laser intensity and their stability, Figure 8.3a. One can
observe that the branch ML1 corresponding to the fundamental ML regime has
two stable parts. The first of them is very narrow and is located near the left
Andronov–Hopf bifurcation point at small values of g0 where the amplitude of the
solution ML1 is small. The second stable part is limited by two bifurcation points.
The left point (QP) corresponds to a bifurcation into a regime of Q-switched ML
corresponding to quasi-periodic laser intensity. In this regime, the peak power of
ML pulses is modulated at the Q-switching frequency. At smaller values of the
pump parameter g0 below the bifurcation point QP, the modulation amplitude
strongly increases. At the right-hand side, there is a saddle-node bifurcation
(SN) where two ML solutions, stable and unstable, coalesce and disappear. The
solutions corresponding to harmonic ML regimes are denoted by ML2 and ML3

in Figure 8.3a. These solutions undergo bifurcations similar to that of the funda-
mental ML solution branch ML1. According to Figure 8.3, bistability between
different ML regimes can exist for certain parameter values.

The results of direct numerical integration of Eqs. (8.19)–(8.21) performed using
the FORTRAN routine RADAR5 [41] are presented in Figures 8.3–8.5. Figure 8.3b
illustrates the dependence of the local extrema of the laser intensity time trace on
the pump parameter g0. It has been constructed using the following procedure.
First, Eqs. (8.19)–(8.21) have been integrated from t = 0 till t ≈ 2 · 103 in order
to skip the transients. Then, during the time interval 
t ≈ 200 local maxima and
minima of the intensity time trace have been plotted for every given value of the
parameter g0. Figure 8.3b shows that for sufficiently small parameter g0, the laser
operates in the Q-switched ML regime. An intensity time trace illustrating this
regime is shown in Figure 8.4a. With the increase of the parameter g0, this regime
undergoes an inverse Andronov–Hopf bifurcation leading to a transition to the
fundamental ML regime (Figure 8.4c). A stability analysis of the fundamental ML
regime with respect to oscillations with Q-switching frequency is performed in
Section 8.5. The Q-switching instability of an ML regime was also studied in [42]
within the framework of the Haus master equation. When the pump parameter
further increases, a transition to harmonic ML regimes with two and three times
higher pulse repetition rate takes place (Figure 8.4d,e). These regimes are charac-
terized by smaller pulse peak intensities than the fundamental ML regime. Note
that the appearance and break-up of harmonic ML regimes can be viewed as a result
of the interaction between neighboring pulses via saturable gain and absorption.
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Figure 8.3 (a) Branches of ML solu-
tions (ML1 – ML3) appearing from the
Andronov–Hopf bifurcations shown in
Figure 8.2 from the branch of cw solu-
tions (CW). Solid (dotted) lines denote
stable (unstable) solutions. Parameter val-
ues are: q0 = 2, T = 25 ps, γ −1 = 0.4 ps,

αg,q = 0, s = 5, γ −1
g = 1 ns, γ −1

q = 10 ps
and κ = 0.5. (b) Sampled intensity peaks
obtained by direct numerical integration of
Eqs. (8.19)–(8.21) with q0 = 5.0, T = 25 ps,
γ −1 = 0.286 ps, κ = 0.1, s = 15, γ −1

g = 1 ps,

γ −1
q = 10 ns, and ϕ = 0.
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A detailed analysis of ‘‘noncoherent’’ ML pulse interaction was performed in [43]
by a method similar to that described in Section 8.5. The break-up of ML regimes is
accompanied by the sudden appearance of a chaotic modulation of the pulse peak
power (Figure 8.4b). Finally, at large pumping, the laser operates in the cw regime
with time-independent electric field intensity. The parameter scan presented in
Figure 8.3b is in qualitative agreement with the experimental results reported in
[44, 45], where a gradual transition from Q-switched ML to a stable fundamental
ML regime was observed on increasing the injection current. An experimental
observation of harmonic ML regime with the pulse repetition period approxi-
mately two times smaller than that of the fundamental ML regime was reported
in [16, 46].

Figures 8.5a,b have been computed similar to the Figure 8.3a, but with the
line-width enhancement factors being used as the bifurcation parameters instead
of the parameter g0. According to Figure 8.5a, corresponding to αq = 3.0, ML pulses
with the largest peak intensity are observed when the line-width enhancement
factors in the gain and absorber sections are approximately equal, αg ≈ αq. These
pulses have the smallest widths also, see Figure 8.5c. With decreasing line-width
enhancement factor in the gain section (αg < αq), the ML pulses become wider, their
peak intensity decreases, and, finally, a transition to a regime with quasi-periodic
laser intensity takes place. This regime is characterized by additional oscillations
at the leading edge of the ML pulse (solid line in Figure 8.5c). An increase of αg

produces an even stronger effect on the ML regime, namely a transition into a
chaotic regime. As it follows from the results of our calculations, this transition
is accompanied by an intermittency between a regular ML regime and a regime
with chaotically pulsating laser intensity. Indeed, just above the transition point,
time intervals of regular ML regime alternate with intervals of irregular pulsations.
The duration of time intervals of chaotic behavior decreases with αg , and, finally,
a purely chaotic regime establishes. The fact that ML pulses with highest quality
were observed for αg ≈ αq can be understood by recalling that the saturable gain
G and absorption Q enter Eq. (8.19) with opposite signs. Therefore, in the case
αgαq > 0, the chirp introduced by the line-width enhancement factor in the gain
section is at least partially compensated by the absorber section. According to our
numerical results, the largest compensation takes place for αg ≈ αq, that is, when
the frequencies ω of the cw solutions are independent of their intensities, Eqs.
(8.26) and (8.27). In the case when the line-width enhancement factors in the gain
and absorber sections are equal, their increase has almost no effect on the pulse
peak power (Figure 8.5b). The break-up of the ML regime at αg = αq > 3.4 leads to
an abrupt transition to a chaotic regime.

Figure 8.6 presents time traces of the electric field intensity and the net gain
per cavity round trip G(t) = G (t) − Q (t) + ln κ for two fundamental ML regimes,
corresponding to different pump parameter values. In Figure 8.6a, corresponding to
g0 = 1.2, the net gain is negative between pulses and becomes positive only during
short time intervals when the pulse intensity is large. Therefore, this solution
satisfies New’s criterion. This criterion requires that, in order to prevent the growth
of perturbations at the tails of an ML pulse, the inequality G − Q + ln κ < 0 should
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Figure 8.4 Laser intensity time traces. Left:
Non-periodic solutions; (a) Q-switched ML
regime at g0 = 0.5, (b) irregular ML regime
at g0 = 5.25. Right: ML regimes; (c) 40 GHz
fundamental ML regime at g0 = 3.0, (d) 80

GHz harmonic ML regime with two pulses
in the cavity at g0 = 4.0, (e) 120 GHz har-
monic ML regime with three pulses in the
cavity at g0 = 5.0. The values of other pa-
rameters are the same as in Figure 8.3b.

be fulfilled between the pulses where the intensity |A|2 is close to zero [4]. In other
words, small perturbations of the vanishing intensity ‘‘background’’ between the
pulses should decay in time. On the contrary, in Figure 8.6b, corresponding to
g0 = 1.67, a stable ML solution of Eqs. (8.19)–(8.21) shows a positive net gain at
the leading edge. The existence of stable pulses with positive net gain at the trailing
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ps. (a) – ML pulses with negative net gain during the whole
slow stage, g0 = 1.2; (bML pulses with positive net gain at
their leading edge, g0 = 1.67. Other parameter values are
the same as in Figure 8.5.
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edge in passively ML lasers was reported earlier [47, 48]. Pulses with positive net
gain at the leading edge, similar to those shown in Figure 8.6b, were previously
reported only for the case of synchronously pumped actively ML lasers [49–51].
Here, the net gain window is opened in the course of the carrier density recovery
process. For typical parameter values of semiconductor lasers, the gain recovers
much slower than the absorption (γg/γq 	 1). Therefore, the gain continues to
recover even when the absorption has already almost reached its saturated value.
This can lead to the appearance of a net gain window that is not caused by the
interplay of the absorption and the returning ML pulse, as it happens in the case of
the classical passive ML mechanism [4], or by an external periodic modulation, as
in the case of active ML.

As it was already mentioned, the fact that New’s criterion is not satisfied
does not necessarily mean that the ML regime is unstable. Stable ML pulses
with ‘‘unstable background’’ can exist for system (Eqs. (8.19)–(8.21)) because
of the difference between the pulse group velocity vp and group velocity v0 of
perturbations of the background. Let us consider an ML regime with the pulse
repetition period Tp = T + δT , and δT 	 T . Then the pulse group velocity can
be estimated as vp = vT/Tp ≈ v (1 − δT/T) where v is the cold cavity group
velocity. Now, we estimate the velocity of small perturbations. Taking into account
the inequality γ T 
 1, the left-hand side of Eq. (8.19) can be rewritten in the
form ∂tA (t) + γ A (t) ≈ γ A(t + γ −1). By equating this to γ A (t − T), we get the
cavity round trip time equal approximately to T + γ −1, which gives the estimate
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Figure 8.7 Group velocity of ML pulses divided by the cold
cavity group velocity v. ML1,2,3 correspond to ML solutions
shown in Figure 8.3. Solid (dashed) lines correspond to sta-
ble (unstable) solutions. Horizontal dotted line: normalized
group velocity of small perturbations, v0/v. Parameter values
are the same as in Figure 8.3b.
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v0 = v
[
1 − (γ T)−1] for the group velocity of small perturbations. ML pulses with

positive net gain at their leading edge shown in Figure 8.6b are stable since they
turn out to move faster than the perturbations of the background (Figure 8.7).
Similarly the pulses with positive net gain at the trailing edge may be stable if they
are moving slower than the small perturbations. The latter situation was reported
in [48].

8.4
Stability Analysis for the ML Regime in the Limit of Infinite Bandwidth

The number of locked cavity modes can be roughly estimated as the ratio of the
bandwidth γ of the spectral filtering element to the intermode frequency spacing
T−1. Here we discuss the limit where this number is large, that is γ T → ∞. In this
limit, the duration of the ML pulse τp ∝ γ −1 tends to zero, its amplitude A0 ∝ γ 1/2

tends to infinity, while the pulse energy 
P ∝ |A0|2τp remains finite. Physically,
this means that the number of locked modes increases while the amplitude of each
mode decreases. We assume that the ML pulse duration τp is much shorter than
the relaxation times of the gain and absorber media, τp 	 γ −1

g,q . This assumption,
known as the slow saturable absorber approximation [4, 5], is realistic for parameter
values, which are typical for monolithic semiconductor lasers. ML in a laser with
slow absorber was studied analytically by New [4] and Haus [5]. They distinguished
between the slow and fast stages of the evolution of the ML solution within the cavity
round trip time. The fast stage corresponds to a short time interval when the electric
field pulse amplitude is large. At this stage, the relaxation terms in the right- hand
side of Eqs. (8.20) and (8.21) can be neglected. During the slow stage, the electric
field is close to zero between the two successive pulses, |A (t)|2 ≈ 0 (Figure 8.8).
At this stage, we neglect the term proportional to the field intensity |A|2 in
Eqs. (8.20)–(8.21).

In this manner, the laser equations can be solved separately for the slow stage
and, under additional simplifying assumptions, also for the fast stage. Then, a
combined analytic solution can be obtained by matching the slow- and fast-stage
solutions. We show that classical results of New [4] and Haus [5] can be reproduced
by the DDE model (Eqs. (8.19)–(8.21)) in the limit in which the gain and loss per
cavity round trip are small. Furthermore, in Sections 8.4.4 and 8.5.2, we generalize
these results to the case of large gain and loss per cavity round trip, that is, for the
situation of semiconductor lasers. We see that the generalized approach of Haus,
compared to that of New, is more accurate for low pulse intensities but has a more
restricted application domain.

8.4.1
New’s Stability Criterion

An important criterion for stability of ML pulses was proposed by New [4]. New’s
criterion requires the net gain G (t) − Q (t) + ln κ to be negative at every time
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Figure 8.8 Time evolution of the electric
field intensity |A|2, the saturable gain G, and
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slow absorber. The fast stage is defined by
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during the slow stage. Physically, it means that small perturbations effecting
the low-intensity interval between two subsequent pulses should decay (absolute
stability). This criterion can be shown to be satisfied if the net gain is negative at
the beginning and end of the slow stage,

G1 − Q1 + ln κ < 0, G2 − Q2 + ln κ < 0. (8.29)

Here G2 and Q2 (G1 and Q1) are the saturable gain G (t) and loss Q (t) evaluated
at the beginning (end) of the slow stage (Figure 8.8). As the end of the slow stage
coincides with the beginning of the fast stage (and vice versa), the two relations in
Eq. (8.29) define stability at the leading and trailing edges of the pulse, respectively.
However, this criterion does not take into account that small perturbations can
propagate between the pulses and, eventually, be absorbed by either the leading or
the trailing edge of the pulse within the time interval of order γ −1. Hence, such
perturbations should not necessarily destroy the ML pulses even if New’s criterion
is violated. Indeed, as we have seen, our numerical computations in Section 8.3
confirm the existence of stable ML regimes with unstable background between the
pulses. Naturally, such pulses should be more sensitive to noise and other small
perturbations than those satisfying New’s criterion.
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8.4.2
Slow Stage

For the slow stage of an ML solution where |A (t)|2 ≈ 0, Eqs. (8.20) and (8.21)
become linear: ∂tG = g0 − γgG, ∂tQ = q0 − γqQ . Solving these equations, we
express the saturable gain G1 and loss Q1 at the pulse leading edge through their
values G2 and Q2 at the pulse trailing edge,

G1 = G2e−γg T + g0

γg

(
1 − e−γg T

)
, (8.30)

Q1 = Q2e−γqT + q0

γq

(
1 − e−γqT

)
. (8.31)

Here, the duration of the slow stage is taken equal to the cold cavity round trip
time T in the limit γ → ∞. Eqs. (8.30) and (8.31) can be further simplified in the
following two limiting situations:

1) The absorber relaxes completely between two successive pulses, that is,
γqT 
 1. Then, Eq. (8.31) simplifies to Q1 = q0/γq.

2) The relaxation time of the gain medium is much shorter than the cavity round
trip time, γgT 	 1. In this case, Eq. (8.30) can be replaced by the relation
G1 = G2 + g0T .

8.4.3
Fast Stage

During the fast stage, we neglect the relaxation terms in the right- hand side of
Eqs. (8.20) and (8.21). With this approximation, introducing the differential pulse
energy p (t) = ∫ t

0 |A (θ)|2 dθ , where t = 0 corresponds to the beginning of the fast
stage, we rewrite these equations as

∂Pg
(
p
) = −e−q(p)(eg(p) − 1), ∂pq

(
p
) = −s

(
1 − e−q(p)

)
, (8.32)

where g
(
p(t)

) = G (t) and q
(
p(t)

) = Q (t). Integrating Eq. (8.32), we express the
saturable gain G2 = g (P) and loss Q2 = q (P) at the trailing edge of the pulse in
terms of their values G1 = g (0) and Q1 = q (0) at the leading edge,

G2 = g (P) = − ln

⎡⎢⎣1 − 1 − e−G1(
esP−Q1 − 1 + e

−Q1
)1/s

⎤⎥⎦ , (8.33)

Q2 = q (P) = ln
[
1 + e−sP

(
eQ1 − 1

)]
. (8.34)

Here, P = p
(
τp

) = ∫ τp
0 |A (t)|2 dt is the total energy of the ML pulse. Integrating

the squared absolute value of both sides of Eq. (8.19) over the fast stage, we obtain

γ −2
∫ τp

0
|∂tA (t)|2 dt + P = κ

∫ τp

0
eG(t)−Q(t) |A (t)|2 dt. (8.35)
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Using the solution of Eq. (8.32), we calculate the integral at the right-hand side of
this equation explicitly and arrive at the relation

γ −2
∫ τp

0
|∂tA (t)|2 dt + P = κ ln

eG1 − 1

eG2 − 1
. (8.36)

Note that the integral term at the left-hand side of Eq. (8.36), describing the energy
loss due to spectral filtering, does not vanish in the limit γ → ∞. Hence, strictly
speaking, this term can not be neglected in the limit of infinite spectral filtering
bandwidth. Indeed, Haus showed that |∂tA (t)|2 ∝ γ 2 |A (t)|2 for pulses of duration
τp ∝ γ −1 [5]. In other words, the spectral width of the ML pulse increases with the
spectral filtering bandwidth in such a way that the losses due to filtering remain
finite and nonzero in the limit γ → ∞. Thus, we have to express the integral term
in Eq. (8.36) via the pulse parameters to provide an analytic solution for the fast
stage. Two specific cases where this is possible are discussed in the next Sections
8.4.4 and 8.5.2.

8.4.4
Laser Without Spectral Filtering

New’s approach is based on the assumption that there is no spectral filtering in
the laser cavity, that is, the response function in Eq. (8.13) is given by f (t) = δ (t).
Hence, in New’s approximation, the term γ −1∂tA (t) with the time derivative in Eq.
(8.19) is neglected. Consequently, the integral term in Eq. (8.36) vanishes and this
equation becomes

P = κ ln
eG1 − 1

eG2 − 1
. (8.37)

In this way, Eqs. (8.30), (8.31), (8.33), and (8.34) together with Eq. (8.37) form
a closed system, which can be solved with respect to the unknowns G1,2, Q1,2,
and P. As a result, one obtains the dependence of the pulse energy P on the laser
parameters. But, as we have seen above, neglecting the integral term for the losses
due to spectral filtering in Eq. (8.36) cannot be rigorously justified even for infinitely
large γ . In this sense, Eq. (8.37) is a rather rough approximation for Eq. (8.36).
However, we will show that this approximation works rather well for a relatively
large parameter domain.

Substituting the solution of system (Eqs. (8.30), (8.31), (8.33), (8.34), and (8.37))
in the inequalities (Eq. (8.29)), we obtain the mode-locking stability boundaries
according to New’s criterion. Figure 8.9 presents the result of this calculation for
a solution with period T that corresponds to the fundamental ML regime (lines
L1 and T1, and for a solution with period T/2 corresponding to a harmonic ML
regime with two pulses in the cavity (lines L2 and T2). The two stability domains
intersect, indicating that hysteresis between the ML regimes with different pulse
repetition rates is possible in a certain parameter domain (as in the direct numerical
simulations shown in Figure 8.3a). According to Figure 8.9, the stability boundaries
for the leading and the trailing edges of the pulse meet at a codimension two point
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ing to New’s criterion. The area marked
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CT for each of the ML solutions. This point, lying on the linear threshold line Th
defined by Eq. (8.28) with ω0 = 0, can be calculated explicitly as

q0 = ln
κ (s − 1)

sκ − 1
, g0 = γg

γq
ln

s − 1

sκ − 1
. (8.38)

It is known that the ML pulses satisfying New’s stability criterion can exist only if
the absorbing medium saturates faster than the gain medium, that is, the condition
s′ > 1 is satisfied [1, 5]. Eq. (8.38) imply that for large gain and losses per cavity
round trip, the existence of such pulses is possible only if a stronger condition is
satisfied,

sκ ≡ s′κ
κ2

= s′κ1κ3κ4 > 1. (8.39)

In the limit of small losses, κk → 1 (k = 1, 2, 3, 4), this condition coincides with the
classical condition s′ > 1. However, for the parameter values typical for semiconduc-
tor lasers with large losses, κ2κ3κ4 	 1, Eq. (8.39) becomes much more restrictive
than the condition s′ > 1. For sκ > 1, the parameter domain of the existence of
ML pulses satisfying New’s criterion becomes larger with increasing sκ . This is in
qualitative agreement with the experimental results in [44], which show that the
quality of the ML can be improved by decreasing nonresonant losses in the laser
cavity.

Equations (8.30), (8.31), (8.33), (8.34), and (8.37) generalize New’s model, since
they do not assume small gain and losses per cavity round trip as in [4]. To obtain
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Figure 8.10 (a) Comparison of ML stability
boundaries, as defined by New’s background
stability criterion, computed by four differ-
ent approaches. Solid lines LGN and TGN
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edge stability boundaries for the generalized
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New’s relation for the pulse parameters from these equations, we expand Eqs.
(8.33) and (8.34) to the first-order terms with respect to G1 and Q1 and neglect the
higher order terms,

G2 = G1e−P, Q = Q1e−sP. (8.40)

Then, substituting Eq. (8.33) in Eq. (8.37) and expanding the resulting equation to
the first-order terms with respect to G1, Q1 and ln κ , we obtain the equation

G1
(
1 − eP

) − Q1

(
1 − esP

)
s

− P ln κ = 0 (8.41)

for the pulse energy, which is equivalent to Eqs. (11) and (12) in [4].
In Figure 8.10a we compare the stability regions of ML pulses satisfying New’s

stability criterion, calculated by four different models. The dashed lines LN and
TN show the ML pulse leading and trailing edge stability boundaries defined by
Eqs. (8.30), (8.31), (8.40), and (8.41), which are equivalent to New’s equations [4].
The solid lines LN and TN are defined by the generalization of New’s model to
the case of large gain and losses described above. Dots denote points on New’s
stability boundaries obtained by direct numerical integration of Eqs. (8.19)–(8.21)
with γ −1 = 0.3 ps. Note that the stability domain becomes larger for smaller γ .
As one can see from Figure 8.10a, the generalized New’s model, despite the
fact that it neglects losses due to spectral filtering, is in good agreement with
the results of numerical integration of the DDE model. On the other hand, the
discrepancy between the stability boundaries defined by New’s original model and
the numerical results is substantially larger. The reasons are the large gain and
losses per cavity round trip that are encountered typically in semiconductor lasers.

When the time derivative of the electric field envelope in Eq. (8.19) is neglected,
as in the approach adopted in this section, the stability boundaries defined by New’s
criterion are independent of the line-width enhancement factors αg,q, which play a
role only when the spectral filtering is taken into account.

8.5
The Q-Switching Instability of the ML Regime

In this section, we discuss stability of the ML regime with respect to the periodic
pulse amplitude modulation by the Q-switching frequency. Using the slow- and
fast-stage equations derived from Eqs. (8.19)–(8.21) in Sections 8.4.2 and 8.4.3, one
can define a map that describes the transformation of the ML pulse parameters per
cavity round trip. A nontrivial fixed point of this map corresponds to a periodic ML
solution. We show that this fixed point can lose its stability via a Neimark–Sacker
bifurcation in which a pair of complex conjugate Floquet multipliers crosses
the unit circle. This bifurcation is responsible for the Q-switching instability of
the ML regime, one of the main sources of amplitude noise in semiconductor
lasers.

Now, let Gn and Qn be the saturable gain and loss values at the beginning of
the fast stage after n cavity round trips, that is, at the n-th pulse leading edge. The
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pulse energy is defined by the relation Pn = ∫ τn
0 |A|2dt where the integration limits,

0 and τn, correspond to the beginning and the end of the fast stage, respectively.
Using Eqs. (8.30), (8.31), (8.33), and (8.34), we obtain the map describing the
transformation of the saturable gain and loss after a cavity round trip as

Gn+1 = −e−γg T ln
[

1 − 1 − e−Gn

(1 + esPn−Qn − e−Qn )1/s

]
+ (1 − e−γg T )g0/γg , (8.42)

Qn+1 = e−γqT ln
[
1 + e−sPn (eQn − 1)

] + (1 − e−γqT )q0/γq. (8.43)

Here, Gn+1 and Qn+1 are the saturable gain and loss at the beginning of the fast stage
after n + 1 cavity round trips, that is, at the leading edge of the (n + 1)-th pulse. In
order to complete the definition of the pulse parameters transformation map, Eqs.
(8.42) and (8.43) should be complemented by a relationship between the energies
Pn and Pn+1 of two consecutive pulses derived from Eq. (8.19) for the electric
field envelope A. We obtain analytic approximations to this relationship using
two simplifying approaches. The first approach is based on New’s approximation
assuming no spectral filtering in the laser cavity [4]. This approximation, already
used in Section 8.4.4 to determine the background stability boundaries according
to New’s criterion, will now be applied for computing the onset of the Q-switching
instability. However, some important parameters of the ML solution such as the
pulse duration and the deviation of the pulse repetition period from the cavity
round trip time T cannot be estimated in the framework of this approximation. We
obtain these parameters in Section 8.5.3 using an alternative approach based on
variational method, which takes into account the effect of spectral filtering on laser
dynamics.

8.5.1
Laser Without Spectral Filtering

Let us rewrite Eq. (8.19) in the form

γ −1∂tAn+1
(
t − γ −1δn

) + An+1
(
t − γ −1δn

) = √
κe

1−iαg
2 Gn(t)− 1−iαq

2 Qn(t)An (t) (8.44)

with An+1 (t) ≡ An (t + Tn) and δn = γ (Tn − T) where Tn is the time interval
between the two successive pulses. Multiplying Eq. (8.47) with its complex conjugate
and integrating over the cold cavity round trip time T , we obtain

γ −2
∫ tn+1

0
|∂tAn+1|2dt + Pn+1 = κ

∫ Pn

0
eGn(p)−Qn(p)dp, (8.45)

where the integrals at both sides are over the fast stage only as the electric field
intensity during the slow stage is negligibly small. Eq. (8.45) describes the energy
balance over a round trip time in the cavity. It extends Eq. (8.35) to the case when
successive pulses have different amplitudes. The integral term at the left-hand
side of Eq. (8.45) describes the energy losses due to spectral filtering. As in this
section, the effect of spectral filtering is completely neglected, we omit this term
and, integrating explicitly the right-hand side, obtain

Pn+1 = κ ln
[
1 − eGn + eGn (1 + esPn−Qn − e−Qn )1/s

]
. (8.46)
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The 3-D map defined by Eqs. (8.42), (8.43), and (8.46) describes the transformation
of the ML pulse parameters Gn, Qn, and Pn after a complete round trip in the laser
cavity. The fixed point

(
g0/γg , q0/γq, 0

)
of this map with the zero pulse energy is

stable for η = g0/γg − q0/γq + ln κ < 0 (linear lasing threshold). It loses stability
in a transcritical bifurcation at the linear lasing threshold η = 0. The fixed point(
G∗, Q∗, P∗

)
with P∗ > 0, which appears as a result of the transcritical bifurcation,

corresponds to the fundamental ML regime of the DDE model (Eqs. (8.19)–(8.21)).
Depending on the parameter values, the bifurcating branch with P∗ > 0 can be
either stable or unstable. In the latter case, a bistability can exist between the
solution with zero electric field intensity and the solution corresponding to the ML
regime. However, we assume the laser parameters to satisfy the relation

(κ−1 − e−q0/γq ) tanh
γqT

2
> s(1 − e−q0/γq ) tanh

γgT

2
,

which implies the bifurcation of a stable branch with P∗ > 0. The fixed point
(G∗, Q∗, P∗) can be computed numerically. Linear stability analysis shows that this
point can lose stability via a Neimark–Sacker bifurcation (an Andronov–Hopf
bifurcation for maps) when two complex conjugate Floquet multipliers cross
the unit circle. The bifurcating periodic solution corresponds to the so-called
Q-switched ML regime, characterized by a periodically modulated pulse energy.
Hence, the Neimark–Sacker bifurcation curve, shown in Figure 8.10b by the
solid line QS, defines the boundary separating the domains of stable periodic ML
and Q-switched ML. The fixed point (G∗, Q∗, P∗) exists to the right of the linear
threshold line Th defined by Eq. (8.28) with ω0 = 0 and is stable above the line
QS. The stability boundaries defined by New’s criterion and computed according
to the method of Section 8.4.4 are shown in Figure 8.10b by the solid lines L and T.
One can see that the lower stability boundary T is separated from the bifurcation
line QS by a narrow strip where the periodic ML pulses are stable with respect to
the Q-switching instability but do not satisfy New’s stability condition because they
have a positive net gain at their trailing edge. The circles in Figure 8.10b show the
ML regime stability boundaries obtained by direct numerical integration of Eqs.
(8.19)–(8.21). The empty circles show the Q-switching instability boundary, while
the black circles show the instability boundary defined by New’s criterion. One can
see that these numerical results are in good agreement with the analytical results
obtained in the limit of no spectral filtering in the laser cavity.

Figure 8.11 presents the dependence of the Q-switching stability boundary of
the fundamental ML regime and the ML instability boundary defined by New’s
criterion on the attenuation factor κ and the ratio s of saturation intensities in the
gain and absorbing sections. The instability boundaries shown by solid and dashed
lines were obtained from Eqs. (8.42), (8.43), (8.46), and (8.29). Our numerical
computations imply that these boundaries depend mainly on the product sκ
rather than on each of these parameters separately. According to Figure 8.11, this
observation is particularly true for large losses that are present in semiconductor
lasers. The domain of Q-switched ML moves in the direction of larger values of the
linear gain and loss parameters g0 and q0, and becomes wider with decreasing sκ .
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This behavior is in agreement with experimental results in [44], where it was shown
that the domain of the stable periodic ML regime of a semiconductor laser increases
with the reflectivity of the facets. The thin gray lines in Figure 8.11a show the
stability boundary of the cw state of Eqs. (8.22)–(8.24) for sκ = 5 (the solid thin line
corresponds to s = 35, the dashed line corresponds to s = 15). For these parameter
values, the Q-switching instability boundaries of the domains of the stable ML and
cw states are close to each other. However, for the parameter values of Figure 8.11b
(sκ = 1.3) the cw state does not undergo an Andronov–Hopf bifurcation, which,
therefore, can not be used for approximating the Q-switching instability boundary
of the ML regime.

Qualitatively, the effect of the parameters s and κ on the ML dynamics admits
a simple interpretation. The ratio s′ of the saturation energies of the two laser
sections controls the main nonlinear mechanism responsible for the compression
of the ML pulse. Hence, one expects that the quality of ML improves and the pulse
becomes shorter with the increase of this parameter. The attenuation factor κ in
Eqs. (8.19)–(8.21) measures the strength of the feedback (per round cavity trip),
thus controlling another important mechanism of the ML pulse formation. If κ is
too small, then the amplitude of the pulse, which comes back after a round trip
in the laser cavity, is not sufficient for creating the net gain window necessary
for supporting ML. Therefore, one expects that the increase of κ should favor the
ML regime. Experimental results confirm the validity of this qualitative argument
[52]. We note, however, that the results of our quantitative analysis, such as the
important role of the product sκ discussed above, are beyond the scope of this
simple qualitative argument.
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8.5.2
Weak Saturation Limit

In this section, we assume that the gain and absorbing media are weakly saturated
by the ML pulses. This assumption allows us to obtain an explicit expression for
the pulse shape by solving analytically the fast-stage equations. Using the fast time
variable ζ = γ t, we rewrite Eq. (8.47) as

∂ζ an+1 (ζ − cn) + an+1 (ζ − cn) = Fn
(
pn

)
an (ζ ) , (8.47)

where an (ζ ) = γ −1/2An (t), pn (ζ ) = ∫ ζ

−∞ |an (s)|2 ds and cn = limγ→∞ δn. The func-
tion Fn

(
pn

)
is obtained by substituting the solution of Eq. (8.32) into Eq. (8.47),

F (P) = √
κ

[
1 + e−sp(ζ )

(
eQ1 − 1

)]−1/2

⎡⎢⎣1 − 1 − e−G1(
esp(ζ )−Q1 − e

−Q1 + 1
)1/s

⎤⎥⎦
−1/2

(8.48)

Eqs. (8.47) and (8.48) describe the ML pulse shape in the limit of infinite Lorentzian
bandwidth. For a laser operating close to the threshold, the pulse energy is small,
p (ζ ) ≤ P 	 1/s, that is, both the gain and absorbing media are weakly saturated.
In this approximation, which underpins the theory of Haus [5], Eqs. (8.33) and
(8.34) and the function F (P) in Eq. (8.47) can be Taylor expanded with respect to
P (ζ ) up to second order. Substituting this expansion in Eq. (8.47) and omitting the
higher order terms, we obtain

−an+1 − (1 − cn) ∂ζ an+1 + cn

( cn

2
− 1

)
∂ζζ an+1 +

[
F0 + F′

0pn + F′′
0

2
pn

2

]
an = 0,

(8.49)

with F0, F′
0, and F′′

0 denoting the function F
(
p
)

and its derivatives evaluated at the
point p = 0. Here we assumed a (ζ − c) ≈ a (ζ ) − caζ (ζ ) + c2∂ζζ a (ζ ) /2, that is,
a parabolic gain dispersion, which is a good approximation for a laser operating
near threshold. In a periodic ML regime, when an+1 (ζ ) = an (ζ ) = a (ζ ), cn = c,
and pn (ζ ) = p (ζ ) , Eq. (8.49) has the solution [1, 53]:

a (ζ ) =
√

P

2ζp
sech

(
ζ

ζp

)
, (8.50)

where P is the pulse energy, ζp = γ τp is the normalized pulse width. Substituting
Eq. (8.50) into Eq. (8.49) and equating the coefficients by different powers of the
hyperbolic secant, we obtain the following quadratic equation for the pulse energy:

2 (F0 − 1) + F′
0P + 3F′′

0

8
P2 = 0. (8.51)

Solving Eqs. (8.51), (8.30), (8.31), (8.33), and (8.34) with respect to the pulse
parameters G1,2, Q1,2, and P and substituting the solution in Eq. (8.29), we obtain
the stability boundaries of solution (8.50) defined by New’s criterion. This result
extends analytic results of Haus [5] to the case of large gain and losses per cavity
round trip.
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From Eq. (8.48), it follows that the net gain G − Q + ln κ is zero at the beginning
of the fast stage if F0 = 1. Hence, the relation F0 = 1 defines the pulse leading-edge
stability boundary. Furthermore, Eq. (8.51) implies that F0 = 1 and F′

0 = 0 at
the codimension two point where the leading edge stability boundary meets the
linear threshold line defined by Eq. (8.28) with ω0 = 0. Solving the system of
equations F0 = 1 and F′

0 = 0 with respect to G1 and Q1 and taking into account that
G1 = G2 = g0/γg and Q1 = Q2 = q0/γq if P = 0, we obtain the same codimension
two point (Eq. (8.38)) as in the previous section. Hence, the ML stability boundaries,
which we compute using the generalized approaches of New and Haus, start from
the same point of the linear threshold in the parameter space.

The generalized model of this section coincides with the original model of
Haus in the limit of small gain and losses per cavity round trip. Indeed, expand-
ing Eq. (8.51) to second order with respect to G1, Q1, and ln κ , we obtain the
equation

G1 − Q1 + ln κ − 1
2

(
G1 − sQ1

)
P + 3

16

(
G1 − s2Q1

)
P2 = 0 (8.52)

for the pulse energy. For G1 	 s2Q1, this equation is equivalent to (Eq. (36)) in [5].
The leading and trailing edge stability boundaries defined by the original

equations of Haus are shown in Figure 8.10a by the dashed lines LH and TH,
respectively. The same boundaries defined by the generalized Haus model pre-
sented in this section are shown by the solid lines LH and TH. The prediction
of the original Haus model, as that of original model of New, substantially de-
viates from the stability domain obtained by the direct numerical integration
of the delay differential Eqs. (8.19)–(8.21) for the parameter values of semi-
conductor lasers. Figure 8.10a shows that the stability domain defined by the
generalized Haus model is in good agreement with the numerical results if the
pulse energy is sufficiently small. The agreement becomes worse for higher pulse
energies. On the other hand, the stability domain defined by the generalized
New’s model is in good agreement with the numerical results even for strong
saturation.

In the case when gain and loss are very small and a pulse changes only
very slightly after one cavity round trip, Eq. (8.49) can be reduced to a partial
differential equation known in the Haus theory [1]. In this case, we have F0 ≈
1, an (ζ ) ≡ a (ζ , n), pn (ζ ) ≡ p (ζ , n), ∂ζ an+1, ∂ζζ an+1 ≈ ∂ζ a (ζ , n) , ∂ζζ a (ζ , n), and
an+1 (ζ ) − an (ζ ) ≈ ∂na (ζ , n). Using these relations Eq. (8.49) can be rewritten in
the form

∂na = (1 − c) ∂ζ a − c
( c

2
− 1

)
∂ζζ a +

[
F′

0 + F′′
0

2
p

]
pa.

Note that the analysis performed in this paragraph can be easily generalized to
the case when αg , αq, ϕ �= 0. In this case, the solution of the Haus master equation
has the form of a chirped hyperbolic secant sech1+iβ . A detailed derivation of one
of the modifications of the Haus model from the DDE one was performed in
[42]. A general method of a reduction of DDEs with large delay to equations of
Ginzburg–Landau type is discussed in [54–57].
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8.5.3
Variational Approach

The simplified map model defined by Eqs. (8.42), (8.43), and (8.46) is based on
interpreting the ML solution as a T-periodic sequence of δ-pulses of equal energy
P∗. The definition of this map does not include the line-width enhancement factors
αg,q and, hence, does not take into account their effect. Furthermore, the model
does not provide information about such important parameters of the ML regime
as the pulse width and the deviation of the pulse repetition period T∗ from the cavity
round trip time T . In order to estimate these parameters, we modify the definition
of the map using the following variational approach. We look for solutions of the
fast stage Eq. (8.19) after n cavity round trips in the form

An(τ ) =
√

Pnγ

2τn
sech

(
γ t

τn

)
, (8.53)

where Pn is the pulse energy and τn/γ is the pulse duration. It was shown in [5]
that a hyperbolic secant formula is an exact solution of the Haus master equation
derived in the limit of weak saturation, that is when the nonlinearities can be
replaced with the Taylor expansion up to the second-order terms with respect to
the pulse energy P (see also Section 8.5.2). However, we use here the ansatz (Eq.
(8.53)) for large saturation too.

For simplicity, we assume zero line-width enhancement factors αg = αq = 0.
Substituting Eq. (8.53) in Eq. (8.45) and taking into account that the right-hand
side of this equation equals the right-hand side of Eq. (8.46), we obtain

Pn+1

3τ 2
n+1

+ Pn+1 = κ ln
[
1 − eGn + eGn (1 + esPn−Qn − e−Qn )1/s

]
. (8.54)

Importantly, since in the limit of infinite bandwidth γ T → ∞ the normalized
pulse width τn is finite and nonzero, the two terms in the left-hand side of Eq. (8.54)
are of the same order of magnitude, while the approach of New is based on the
assumption that the first term is much smaller than the second one. Hence, Eq.
(8.54) assuming the Lorentzian spectral filtering line shape in the limit of infinite
bandwidth, and Eq. (8.46) assuming no spectral filtering lead to different estimates
of the ML pulse energy.

Thus, we take into account the spectral filtering by replacing Eq. (8.46) with
Eq. (8.54), while Eqs. (8.42) and (8.43), which do not depend on the pulse shape,
remain the same. Since Eq. (8.54) contains as an additional pulse parameter the
normalized pulse width τn, an additional equation for the transformation of this
parameter after a cavity round trip is needed. Such an equation can be obtained by
integrating Eq. (8.44) from zero to the cavity round trip time T . We assume that the
optical field intensity is negligibly small during the slow stage, hence the interval
of integration is reduced to the fast stage only, and we use the Eqs. (8.33), (8.34),
(8.53), and An+1(t) = √

γ Pn+1/ (2τn+1)sech(γ t/τn+1) for the variables G, Q , An, and
An+1 when integrating Eq. (8.44). Squaring the resulting equation and passing to
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the limit γ T → ∞, we obtain

τn+1Pn+1 = κτnPn

(
1
π

∫ Pn

0

�(p, Qn, Gn)√
p(Pn − p)

dp

)2

(8.55)

with

�(p, Qn, Gn) = [
1 + e−sp(eQn − 1)

]−1/2
[

1 − 1 − e−Gn

(1 + esp−Qn − e−Qn )1/s

]−1/2

.

Note that since the ansatz (Eq. (8.53)) is not an exact solution of the model, there
is a freedom in choosing the fourth equation, which completes the definition
of the pulse parameters transformation map. We show below that our choice
of defining Eq. (8.55) is justified by the reasonable results obtained in this
way.

The 4-D map defined by Eqs. (8.42), (8.43), (8.54), and (8.55) can be analyzed
in the same way as the 3-D map in the previous section. Again, the stable fixed
point (G∗, Q∗, P∗, τ∗) with a positive pulse energy component P∗ is interpreted as a
solution corresponding to the fundamental ML regime and the Neimark–Sacker
bifurcation line is used to approximate the Q-switching instability boundary of
the domain of stable ML. This boundary is shown in Figure 8.11 together with
the background stability boundaries obtained by New’s criterion from the 4-D
map (dashed lines) and 3-D map (solid lines). The results of numerical direct
integration of Eqs. (8.19)–(8.21) are shown by dots. One can see that, as expected,
the results obtained with the 4-D map model are in better agreement with the
results of direct numerical integration of the DDE model than those obtained
with the 3-D map model. However, the difference between the stability boundaries
obtained with and without taking into account spectral filtering is relatively small
for the parameter values of Figure 8.10b. A more important advantage of the
4-D map model over the 3-D map one is that the former allows one to estimate
the normalized pulse width τ∗ and difference δ∗ = γ (T∗ − T) between the pulse
repetition period and the cavity round trip time. The first of these quantities,
τ∗, can be obtained by computing the fixed point (Q∗, G∗, P∗, τ∗) of the map
(Eqs. (8.42), (8.43), (8.54), and (8.55)). The second quantity, δ∗, can be evaluated
by means of an algorithm, which is similar to the one we used to derive Eq.
(8.55). Namely, for the periodic ML solution of period T∗ Eq. (8.44) can be
rewritten as

γ −1∂tA(t − γ −1δ∗) + A(t − γ −1δ∗) = √
κeG(t)/2−Q(t)/2A(t).

Substituting the fast stage Eqs. (8.33), (8.34), and (8.53) into this equation, multi-
plying it by t, and integrating over the round trip time, we obtain
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Figure 8.12 (a) Normalized difference be-
tween the ML pulse repetition period T∗ and
the round trip time T. (b) Normalized ML
pulse width τ∗. The lines L1,2 (T1,2) corre-
sponds to the leading edge (trailing edge)

background stability boundary shown in
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calculated for sκ = 5 and sκ = 1.3, respec-
tively. Parameter values are the same as in
Figure 8.10b.

δ∗ = 1 + τ∗
√

κ

π

∫ P∗

0

�(p, Q∗, G∗)√
p(P∗ − p)

arctanh
(

2p

P∗
− 1

)
dp.

Figure 8.12a,b shows how the quantities τ∗ and δ∗ change along the ML stability
boundaries defined by New’s criterion with increasing pump parameter g0. We
found that these two quantities are not sensitive to simultaneous variations of
the parameters s and κ , provided that the product sκ is fixed (this finding is
similar to the observation we made above about the Q-switching, leading edge, and
trailing edge instability boundaries of the ML domain, which mainly depend on
the product sκ , rather than on the parameters s and κ separately). The plots of the
ML pulse parameters τ∗ and δ∗ evaluated at the background stability boundaries in
Figure 8.12 are obtained for two different values of the product sκ . The lines L and
T correspond to the pulse leading and trailing edge stability boundary, respectively.
From Figure 8.12b, it follows that the pulse width is smaller at the trailing edge
stability boundary, which is close to the instability threshold indicated by gray
lines in Figure 8.11. The quantity −δ∗ increases (decreases) with increasing pump
parameter g0 along the line L (T), that is, the pulse repetition rate increases with g0

along the pulse leading edge instability boundary and decreases at the pulse trailing
edge instability boundary. The reason is that near the line L the net gain window
is shifted toward the leading edge of the pulse, hence the ML pulse is accelerated
by the nonlinear media. Similarly, near the trailing edge instability boundary, the
nonlinear effects retard the ML pulse as the net gain window is shifted toward its
trailing edge in this case. The meeting point of the lines L and T in Figure 8.12a lies
on the linear threshold line and is characterized by an infinitely small pulse energy.
The quantity −δ∗ at this point is negative due to the dispersive losses introduced
by the spectral filtering element.
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8.6
Conclusion

In this chapter we have derived and analyzed both numerically and analytically a
model of a passively mode-locked semiconductor laser based on a system of three
differential equations with time delay (Eqs. (8.19–8.21)) [18–20]. In the limit of
small gain and loss per cavity round trip using the asymptotic approach described
in [42, 54–57] the equation for the electric field envelope (Eq. (8.19)) can be reduced
to a partial differential equation of Ginzburg–Landau type (see also Section 8.5.2).
This reduction reveals a relation between the DDE model and the Haus master
equation. An important characteristic feature of the DDE model is, however, that
unlike different modifications of the Haus master equation, this model does not
assume small gain and loss per cavity round trip. Therefore, this model is more
suitable for studying ML in semiconductor lasers. In particular, the DDE model
is capable of describing the ML pulse asymmetry (Figures 8.4 and 8.5c) observed
experimentally in [17, 58, 59].

A comparison of the results obtained using the DDE model with those from
the linear cavity traveling wave model was performed in [60, 61]. It was shown
that qualitative results obtained with these two models are very similar. According
to the relation s = s′/κ2, where κ2 < 1 is the attenuation factor introduced in
Eq. (8.9), in order to get a better agreement with the traveling wave model, the
saturation parameter s in Eq. (8.21) should be taken larger than the ratio of the
saturation intensities of the gain and absorber sections, s > s′. In the ‘‘multisection’’
version of the DDE model proposed in [61] the laser sections are treated as sets
of smaller subsections each described by its own set of material variables. In
this version, distributed losses in the gain and absorber sections are modeled
by introducing attenuation coefficients between two neighboring subsections.
Numerical simulations performed in [61] indicate that a reasonable quantitative
agreement can be achieved between the traveling wave and the DDE model.

The DDE model can be easily modified for a description of active and hybrid ML
as well as of the effect of delayed feedback and various types of optical injection
on the characteristics of ML regime. In particular, in [9], this model was used for
a theoretical study of the ML pulse repetition frequency locking by an external
periodic modulation of the reverse voltage V applied to the absorber section. In
this article, it was assumed that the escape rate from the ground state to the exited
state in the absorber section exponentially depends on V . An analytical approach to
the calculation of the locking cone width in a hybrid mode-locked laser [62] and in
a mode-locked laser subjected to a single-mode injection [63] was developed on the
basis of the DDE model. The effect of single-mode [14] and dual-mode [64] optical
injection on the characteristics of ML regime was studied numerically. In [65], the
DDE model was generalized to include a photonic crystal element inside the laser
cavity.

Generalizations of the DDE model developed for a description of ML in quantum
dot lasers [22] deserve particular attention. A modification of the DDE model that
takes into account carrier exchange between the 2D carrier reservoir (wetting layer)
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and a single (ground) discrete level in quantum dots was proposed in [66]. A bifur-
cation analysis of this model was performed in [67]. It was shown that the dynamics
of a passively mode-locked quantum dot laser strongly depends on the relative
lengths of the gain and absorber sections. A laser with a relatively short absorber
section can exhibit Q-switched ML and, at sufficiently small absorber voltages, even
a pure Q-switching regime (the latter was demonstrated experimentally in [67]).
On the contrary, in a laser with relatively long absorber section, the Q-switching
instability can be completely suppressed and a bistability appears between the laser
off state and different ML regimes. Some more sophisticated modifications of the
DDE model, which take into account both the ground and the first exited state in
quantum dots as well as the possibility of lasing at the exited state, were studied in
[61, 68].
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9
Dynamical and Synchronization Properties
of Delay-Coupled Lasers
Cristina M. Gonzalez, Miguel C. Soriano, M. Carme Torrent, Jordi Garcia-Ojalvo, and
Ingo Fischer

9.1
Motivation: Why Coupling Lasers?

For some decades already, people have optically coupled semiconductor lasers with
each other. Initially, the main motivation has been to superpose the emission of
several lasers coherently, thereby boosting the output power. Different strategies
have been followed, such as injection-locking high-power lasers with low-power
coherent seed lasers, or to build laser arrays of edge-emitting lasers with laterally
coupled lasers (see e.g., [1] and references therein). Later also, two-dimensional
arrays of vertical-cavity surface-emitting lasers (VCSELs) have been realized [1].
In the injection-locking approach, the coupling was mostly unidirectional and via
the coherent optical field. In the case of laser arrays, the coupling can originate
from different mechanisms, including coupling via a shared carrier reservoir
and/or the spatial overlap of the optical fields. In either case, the coupling times
have been negligible or irrelevant for the observed behavior. Nevertheless, besides
the intended injection-locked stable emission, both configurations also exhibited
dynamical instabilities in the laser emission. For an overview of the history and
the physics of injection-locking instabilities, see [2]. The laterally coupled laser
arrays can also exhibit dynamical instabilities (see e.g., [3, 4]). Comparing the
emission of the individual stripes in the laser arrays, Winful et al. demonstrated
one of the first examples for the possibility of synchronizing deterministic chaos
[5]. In 1997 Hohl et al. found that weakly coupling two nonidentical edge-emitting
lasers face-to-face at a significant distance could lead not only to locking of their
optical frequencies but also to the synchronization of their relaxation oscillations,
thereby affecting their dynamical behavior [6]. They found that the coupled lasers
can exhibit localized synchronization characterized by low-amplitude oscillations
in one laser and large oscillations in the other. The laser intensities exhibited
periodic or quasiperiodic oscillations. A few years later, Heil et al. and Fujino et al.
found, that the nonnegligible delay in the coupling of face-to-face, mutually coupled
lasers induces characteristic instabilities in their emission dynamics and particular
synchronization properties [7, 8]. This has inspired many studies on the influence
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of delayed coupling on laser dynamics, as well as delay-coupled systems in general.
One key criterion for the classification of the dynamical behavior is the length of
the coupling delay. Qualitatively different behavior has been found for the cases
of short [9] and long delays [7]. If the coupling delay τ is of the same order as the
relaxation oscillation period τRO of the laser (τ ∼ τRO), it is referred to as the short
delay regime. If τ � τRO, it is denoted as the long delay regime. In the following, we
concentrate on the long delay regime. This chapter covers aspects of delay-induced
instabilities, synchronization properties, modulation characteristics, influence of
noise, and the potential application of delay-coupled lasers.

9.2
Dynamics of Two Mutually Delay-Coupled Lasers

9.2.1
Dynamical Instability

The starting point for the study of delay-coupled lasers has been the configuration
of two longitudinally delay-coupled semiconductor lasers in the long delay regime.
A sketch of this configuration is depicted in Figure 9.1.

The long delay regime, defined by τ � τRO, is typically represented by geometric
coupling distances of l > 30 cm, corresponding to coupling delays of τ > 1 ns. We
first consider the symmetric situation, meaning very similar lasers with adjusted
wavelengths, identical operating conditions, and symmetric bidirectional coupling.
In [7], it has been found that the delayed coupling induces chaotic intensity dynamics
on timescales ranging from subnanoseconds to microseconds. Figure 9.2 depicts a
typical intensity time series of one of the mutually coupled lasers.

The dynamics resembles the dynamics found for delayed optical feedback. In
some sense, these studies can be seen as an extension of the investigations of lasers
with delayed feedback. The dynamics comprises similar low-frequency fluctuation
(LFF) behavior. However, here it does not originate from passive feedback, but
from delayed coupling because of the respective other laser. The signal of one of
the lasers is injected into the other with a delay of τ , while the injection of the latter
laser is injected back into the former with a delay of 2τ after its initial emission.
Consequently, the dynamics of the delay-coupled lasers is comparable to the
dynamics of a single laser subject to optical feedback with a delay of 2τ , as opposed
to τ , which one would expect from simple symmetry upon reflection considerations.

t

Figure 9.1 Two face-to-face delay-coupled
semiconductor lasers. From [10].
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Figure 9.2 Intensity dynamics induced by mutual delayed
coupling under symmetric conditions. From [10].

The large coupling time and the chaos synchronization phenomenon are the key
elements leading to the coupling-induced instabilities.

In this LFF-like regime, the lasers are biased close to their solitary (stand-alone)
threshold and subjected to a moderate amount of coupling. The output power of the
lasers then shows irregular oscillatory cycles, which consist of an abrupt dropout,
leading to a turnoff of the lasers followed by a gradual buildup of the powers, which
is again followed by a dropout. The duration of the whole cycle is usually about 10τ

up to 100τ . High temporal resolution measurements of the LFF cycle show that
during this cycle, the laser produces picosecond pulses, which gradually grow in
amplitude after a dropout [11, 12].

The signature of these delay-induced instabilities can also be seen in the optical
frequency domain. The optical emission line can typically broaden from several
MHz in solitary lasers far into the GHz range in semiconductor lasers coupled
with delay. For this reason, delayed feedback and delayed coupling are referred to
as the cause of a collapse in the optical coherence of the lasers.

The resemblance between a single laser with feedback and two mutually coupled
lasers can be further extended to a ring of unidirectionally coupled lasers. In
the special case of N = 1 and N = 2, the ring configuration is reduced to a
laser subject to delayed self-feedback and two mutually delay-coupled identical
lasers, respectively, as shown in Figure 9.3. The dynamics, correlation scaling, and
synchronization behavior of N elements coupled in a unidirectional ring with an
evenly spaced delay τ/N can be understood and predicted by those of a single
element subject to self-feedback [13].

As an example of the dynamics in the ring, we present in Figure 9.4 numerical
results for one laser with delayed optical feedback, and two bidirectionally coupled
lasers, N = 4 and N = 100. While the time traces (left panels) show no apparent
change in the dynamical behavior when the number of lasers is increased, the
power spectra (middle panels), and normalized intensity autocorrelation functions
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Figure 9.3 (a) Laser with delayed feedback. (b) Two
bidirectionally delay-coupled lasers. (c) A ring configuration
of N unidirectionally delay-coupled lasers.

(right panels) show evidence of clear changes. Besides a broadband component,
the spectrum of one laser subjected to feedback exhibits discrete frequency peaks
related to external cavity modes. It is striking that the peaks in the spectrum become
less defined when the number of lasers in the ring increases. The corresponding
normalized intensity autocorrelation functions shed more light on this apparent
damping of the compound cavity modes. We have analyzed the heights of the
correlation peaks and found that the peak around t = 2τ (panel c) in the case of one
laser with delayed feedback is exactly reproduced around t = τ in the case of two
bidirectionally coupled lasers (panel f). In both cases, the signals have passed twice
through a nonlinear element. Also, the peak around t = 2τ (panel f) is reproduced
at t = τ when N = 4 (panel i) and can also be found at t = 2τ (panel c). We have
verified that any correlation peak of one laser with delayed feedback at t = Mτ

is reproduced in the autocorrelation function of one laser in a ring with N = M
lasers at t = τ . In general, we find that the shape and position of a correlation
peak is defined by the number of passes through a laser nonlinearity. We can
exactly reconstruct the autocorrelation function of a laser in a ring of N elements
by selecting the corresponding peaks in the autocorrelation function of one laser
with delayed feedback.

9.2.2
Instability of Isochronous Solution

As a next step, the intensity fluctuations of the two lasers have been compared with
respect to each other. Figure 9.5 depicts the intensity dynamics of two mutually
delay-coupled lasers.

For ease of comparison, the second time series is vertically flipped. The two
lasers exhibit correlated power dropouts and also correlated subnanosecond oscil-
lations. However, these oscillations do not occur at the same time. The maximum
correlation peak (reaching values of C > 0.9) is obtained for a relative time shift,
roughly given by τ or −τ . Although the configuration is completely symmetric,
the behavior is not. The lasers are not identically synchronized and show different
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Figure 9.4 Time traces (left panel), power
spectra (middle panel), and normalized in-
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of the emission of one laser for different val-
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delayed optical feedback, (d)–(f) to two bidi-
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Figure 9.5 Comparison of the intensity dynamics of two
delay-coupled lasers under symmetric conditions. From [10].

temporal dynamics. They exhibit a form of generalized synchronization in which
their behaviors are determined by the dynamics of the respective other laser, but
how the dynamics between the two lasers relates to each other has not been
identified yet. It is not given by a simple functional relationship. The maxima in
the cross-correlation function occurring at ±τ indicate that one laser follows the
respective other laser with a delay, however, only showing similar, not identical,
dynamics. Therefore, this type of generalized synchronization has also been re-
ferred to as leader–laggard-type synchronization. While for completely symmetric
conditions leader and laggard roles emerge spontaneously and can even change
in time, the role can also be externally controlled by the introduction of slight
asymmetries. One way to achieve this is by introducing a relative spectral detuning
of the emission of the two lasers. Already, for nominal detunings of only about
1 GHz, being small to typical optical locking ranges of larger than 10 GHz, the
leader and laggards roles can be fixed. For edge-emitting lasers, the laser with
higher frequency becomes the leader in the dynamics [7, 14].

The emission dynamics of delay-coupled laser configurations – here, in par-
ticular, for two mutually delay-coupled lasers – can be modeled (assuming
single solitary laser mode emission and low-to-moderate coupling) via a set of
rate equations, resembling the Lang–Kobayashi equations [15] for the laser with
feedback:

Ė1,2(t) = ∓i�E1,2 + 1

2
(1 − iα)

[
gn,ini

]
E1,2 + κcE2,1(t − τ ), (9.1)

with κc being the coupling strength (see also chapter 6). E represents the slowly
varying electric fields around the symmetric reference frame (�2 + �1)/2, and �

the detuning of the lasers in this reference frame. �1,2 is the free running optical
frequency of laser 1 and 2, respectively. α refers to the line-width enhancement
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factor, and gn,i the differential gain of laser i. The complementary equations for the
excess carrier densities ni read:

ṅi = (p − 1)
Ith,i

e
− γeni −

(
�0 + gn,ini(t)

)
‖Ei‖2, (9.2)

where, as before, Ei(t) refers to the optical field generated by laser i, γe the carrier
decay rate and �0 the photon decay rate. Ith,i is the bias current at the solitary
threshold of laser i, e is the electron charge, and p the pump parameter. ‖ · · · ‖
denotes the amplitude of the complex field.

From the experimental studies, one might assume that asymmetries in the
setup or laser equations are the origin of the symmetry breaking, resulting in
the observed leader–laggard behavior. This can be tested in the modeling, where
one can choose perfectly symmetric conditions. As a result of the modeling,
the same leader–laggard behavior is found, corresponding to the generalized
synchronization solution. Still, because of the symmetry of the system, a symmetric
solution has to exist, and in the modeling one can even prepare the system to start
in this solution. Without noise, the system might even prevail in this state for
some time. However, as soon as one laser experiences a tiny perturbation, the
system escapes to the generalized synchronized solution. The symmetric solution
is unstable. This is shown in Figure 9.6.

Remarkably, the unstable character of the symmetric, isochronously synchro-
nized solution exhibited by delay-coupled oscillators holds not only for the chosen
parameter conditions but also for all considered parameter situations, and even
for a large class of delay-coupled oscillators in general. It is only recently that this
general property has been understood [16, 17].
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Figure 9.6 Intensity dynamics of two mutually delay-
coupled lasers, obtained by modeling. At t = 0, the sys-
tem is prepared in the isochronously synchronized state.
At t = 200 ns, a small perturbation is applied, resulting
in the emergence of the leader–laggard state. Courtesy of
Claudio Mirasso.
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9.3
Properties of Leader–Laggard Synchronization

9.3.1
Emergence of Leader–Laggard Synchronization

As we have seen above, when two mutually coupled lasers having the same optical
frequency operate, they synchronize with a lag, with a random change in the leader
and laggard roles. To understand the emergence of this symmetry breaking in
the system, one can analyze the transition from unidirectional to bidirectional
injection. This can be accomplished, for instance, with the experimental setup
shown in the left panel of Figure 9.7, in which the directionality of the coupling is
varied in a controlled way, by separating the coupling path into two unidirectional
paths and adding a neutral-density filter of varying transmittance to one of the
paths. This allows one to see the transition from stable unidirectional injection to
chaotic synchronization with a leader in the dynamics, and how this chaotic lag
synchronization arises in the system.

In the unidirectional case, the receiver laser (LD2) is stable at very low injec-
tion levels, with an optical power close to that of the emitter laser. When the
(unidirectional) coupling is increased, the receiver laser goes from stable to oscil-
latory output. This oscillation becomes more and more unstable if the coupling
is increased further, or if a reverse injection is added. When we depart from the
unidirectional coupling state by gradually increasing the injected light coming
from the reverse path, chaos arises in the system, with a clear symmetry breaking
introduced by the time delay of the coupling paths.

The transition to chaos can be observed in the output intensities of the two
lasers. The right panel of Figure 9.7 shows the time traces of the two lasers (LD1
at the top and LD2 at the bottom) and the corresponding cross-correlation func-
tions for increasing back injection. In the case of purely unidirectional injection
(Figure 9.7a,b), the emitter laser is naturally stable, and the receiver laser exhibits
small oscillations as a result of the injection. The respective cross-correlation
function has its maximum at −τ1,2 (the flight time from LD1 to LD2). When
the back injection is nonzero, but small, the cross-correlation function reveals a
quasiperiodic state due to the very high asymmetry in the couplings. The high-
est peak appears at −τ1,2, but several higher harmonics occur at lags τ1,2 + τ2,1.
Quasiperiodicity is revealed by growing peaks at those lags in the cross-correlation
function (Figure 9.7c,d). The chaotic dynamics typical of symmetric coupling is
observed in the weakly assymmetric coupling case (Figure 9.7e,f), and is char-
acterized by a quick decrease to zero of the cross-correlation function away
from its maximum. The difference in the rates at which the envelope of the
cross-correlation peak decays characterizes the transition from a quasiperiodic
to a chaotic behavior. These results show that the symmetry-breaking behav-
ior underlying the leader–laggard dynamics [7] emerges from a quasiperiodic
state that later transforms into a chaotic state with a well-defined leader in
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Figure 9.7 Left panel: experimental setup
to examine the emergence of lag synchro-
nization. Two lasers LD1 and LD2 are op-
tically coupled through two unidirectional
pathways running in opposite directions. A
neutral-density filter in the path from LD2 to
LD1 allows to tune the coupling from purely
unidirectional from LD1 to LD2, to purely

bidirectional. Right panel: (a,c,e) output in-
tensities of LD1 (top) and LD2 (bottom) and
the corresponding cross-correlation functions
(b,d,f) for increasing back injection from LD2
to LD1 (from top to bottom). Abbreviations:
NDF, neutral density filter; OI, optical isola-
tor; M, mirror; D1, D2, detectors.

the dynamics. The quasiperiodic state is characterized by out-of-phase synchro-
nized outputs, with a cross-correlation function exhibiting a clear maximum
at −τ1,2, and secondary peaks at a distance equal to the sum of the exter-
nal cavities, while in the chaotic case the secondary peaks suffer a loss of
correlation.
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9.3.2
Control of Lag Synchronization

When the output of a semiconductor laser with feedback, operating in the LFF
regime, is introduced into a second laser, power dropouts are also induced in the
latter, provided the two lasers are similar enough in their physical properties. The
dropouts are synchronized between the two lasers and, in general, the emitter
laser leads the dynamics (i.e., the dropouts in the emitter precede those in the
transmitter) [18, 19] with a time lag equal to the coupling time. If the coupling and
feedback strengths are tuned such that the total injection (feedback + coupling)
is equal for the two lasers, and if the feedback time is larger than the coupling
delay, the emitter laser can anticipate the receiver [20]. This synchronization state
is, nevertheless, much less common and more difficult to reach than the usual lag
synchronization state discussed here. Interestingly, a similar dynamics is observed
in the case of two bidirectionally coupled lasers, even in the absence of an external
mirror, as we have seen above. We remind the reader that when the two lasers have
the same frequencies, the leader and laggard roles alternate randomly between the
two lasers, whereas in the presence of frequency detuning the laser with higher
frequency is the one leading the dynamics, again with a time lag equal to the
coupling time. In the bidirectional case, a well-defined leader also exists when one
of the lasers is subject to feedback [21]; this behavior can again be attributed to
the existence of a frequency detuning between the lasers, which is, in this case,
induced by the feedback itself [22].

The question then is how the transition between the unidirectional and bidirec-
tional coupling schemes comes about. To that end, one can use the experimental
setup shown in the left panel of Figure 9.8. In this scheme, two semiconductor
lasers, one of them subject to optical feedback from an external mirror, are coupled
optically via two distinct paths through which light is made to travel in opposite
directions with suitable optical isolators. The directionality of the coupling can be
varied in a controlled way by tuning a neutral-density filter in one of the two paths.

The right panel of Figure 9.8 shows the dynamical behavior of this system when
coupling varies from purely unidirectional to purely bidirectional. In the absence
of coupling from any of the two paths, laser LD2 is stable, while laser LD1 operates
in the LFF regime due to the optical feedback from the external mirror M. When a
sufficient amount of light from LD1 is injected into LD2, the latter exhibits power
dropouts as well, following those of LD1 with a certain time lag (see plot (a) in
the right panel of Figure 9.8). The time lag can be determined by comparing the
times at which synchronized power dropouts occur in the two lasers. A histogram
of the time differences between synchronized power dropouts corresponding to
this regime is shown in plot (b). The lag is calculated as the difference between
the dropout times in LD1 and LD2. Therefore, a negative value corresponds to an
advance of LD1 over LD2, as expected and evident from the vertical dashed lines
in plot (a). Intuitively, this lag is produced by the time needed by the light of one
laser to affect the dynamics of the other. We note that another synchronized state
is possible in this setup, in which the lasers are synchronized at zero-lag (provided
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Figure 9.8 Left panel: experimental arrange-
ment of two semiconductor lasers coupled
via two independent unidirectional paths.
Laser LD1 receives optical feedback from
mirror M. Right panel: experimental out-
put intensities (left column) and the cor-
responding histogram of time differences
between 1000 synchronized dropouts in
the two lasers (right column) for increasing

transmittance of the filter F2 (from top to
bottom). The time traces in the left plots
have been shifted vertically for clarity, with
LD1 corresponding to the top trace and
LD2 to the bottom trace in each plot. Ver-
tical dashed lines in those plots signal the
occurrence of a dropout in laser LD1. Abbre-
viations: M, mirror; PD1, PD2, photo diode;
OI, optical isolator. Adapted from [23].

the feedback and coupling times are equal) [24], but this requires careful tuning to
make the coupling and feedback strengths equal, and extremely similar lasers [18];
this regime is not shown here.

When the light emitted from LD2 is allowed to reach LD1, it becomes possible
to control the strength of that coupling, varying the transmittivity of filter F2, while
keeping the amount of light injected from LD1 into LD2 constant. Plot (c) in the
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right panel of Figure 9.8 shows that for moderate transmittivities, the situation
does not change much with respect to the purely unidirectional case (LD1 leads the
dynamics a time ∼τc), even though a substantial amount of light from LD2 is already
entering LD1. For larger back coupling, however, (plot e) laser LD2 begins to have a
certain influence and takes over the leader role randomly, leading to a bimodal and
symmetric histogram of time differences between dropouts (plot f). The situation
resembles that of two mutually coupled lasers without mirrors described above [7],
even though that case is perfectly symmetrical and the present one is not, since
one of the lasers (LD1) is subject to feedback but not the other. Finally, when the
the amount of light being coupled back from LD2 into LD1 is large enough, until
the coupling is purely bidirectional (plots g,h), laser LD2 takes over the leader role
permanently: its dropouts consistently precede those of LD1, again a time ∼τc.

So, naturally, the question arose whether the zero-lag solution always has to be
unstable, or whether this can be overcome by modifying the coupling configuration.
This question resulted in the extension to a chain of three mutually delay-coupled
semiconductor lasers, as discussed in the following section.

9.4
Dynamical Relaying as Stabilization Mechanism for Zero-Lag Synchronization

9.4.1
Laser Relay

We have shown in the previous sections that the natural synchronized state of two
delay-coupled lasers is one in which one of the lasers leads the other one a time
equal to the flight time between the lasers. However, in many natural situations,
oscillations between distant dynamical elements can be isochronous even in the
presence of nonnegligible coupling delays. A specially important example of this
phenomenon arises in the nervous system, where zero-lag synchronization has
been observed between distant cortical regions [25, 26] and pairwise recordings
of neuronal signals [27]. The mechanism of this phenomenon, through which
two distant dynamical elements can synchronize at zero-lag even in the presence
of nonnegligible delays in the transfer of information between them, has been
debated for many years in the field of neuroscience. Complex mechanisms and
neural architectures have been proposed to answer this question, [28–30] which,
however, exhibit limitations in the maximum synchronization range (see e.g., [29]),
and rely on complex network architectures [30].

Coupling in mutually injected semiconductor lasers is naturally subject to
delay. Thus, coupled lasers can be used to explore potential mechanisms for
zero-lag synchronization. The left panel of Figure 9.9 shows a simple mechanism,
consisting of three similar dynamical elements coupled bidirectionally in a series,
in such a way that the central element acts as a relay of the dynamics between the
outer elements [31]. The central laser, which does not need to be carefully matched
to the other two, mediates their dynamics. Without coupling, the three lasers
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(LD2) exchanges information between the
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emit constant power, representing damped relaxation oscillators. In the presence
of coupling, the lasers exhibit chaotic outputs that, remarkably, are synchronized
with zero-lag between the outer lasers, while the central laser either leads or
lags the outer lasers. The right panel of Figure 9.9 shows the time series of the
output intensities (left column), in pairs, and the corresponding cross-correlation
functions Cij(�t), defined in such a way that a maximal cross-correlation at a
positive time difference �tmax indicates that element j is leading element i with a
time advance �tmax, and vice versa. In the situation shown in the figure, the optical
frequency of the central laser was slightly decreased with respect to the outer lasers
(negatively detuned) by adjusting its temperature, for optimal synchronization
quality. Zero-lag synchronization between the intensities of the outer lasers can
be clearly seen in Figure 9.9a, and also manifests itself in the cross-correlation
function shown in Figure 9.9d, which presents an absolute maximum at �tmax = 0
(i.e., at zero-lag). The correlation between the central laser and the outer ones
(Figure 9.9b,c) is not as high, and presents a nonzero time lag, as can be seen from
the cross-correlation functions shown in Figure 9.9e,f. This lag coincides with the
coupling time between the lasers. The fact that �tmax is negative means that the
central laser dynamically lags the two outer lasers. Therefore, the outer lasers are
not simply driven by the central one. This zero-lag synchronization is quite robust
against spectral detuning of the lasers, even for positive detuning (in which case
the central laser leads the dynamics).

9.4.2
Mirror Relay

The main argument, why zero-lag synchronization could be observed in the laser
chain, is that the relay laser in the center is redistributing the signals of the
respective outer lasers symmetrically. Consequently, the question arises whether
the central laser could be replaced by a semi transparent mirror as relay element.
The corresponding scheme is depicted in Figure 9.10.

The two semiconductor lasers are mutually coupled through a partially transpar-
ent mirror placed in the coupling path between both lasers. Therefore, the light
injected into each laser is the sum of its delayed feedback from the mirror and
the light coming from the respective other laser. For the numerical studies, cou-
pling coefficients and feedback strengths were chosen such that the lasers operate
in a chaotic regime. In numerical investigations of this configuration, identical
synchronization between the dynamics of both lasers was obtained for arbitrary
coupling distances between the lasers. For the mirror being precisely in the center,
zero-lag synchronization was found. Changing the position of the mirror turned

t
t

Figure 9.10 Scheme of two mutually
delay-coupled lasers with a semitransparent
mirror as relay.
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out not to be relevant for the synchronization quality. Even for strongly asymmetric
positioning of the mirror, identical synchronization was still observed, then with
a temporal offset given by the difference of the corresponding delay times. Thus,
identical and even zero-lag synchronization can be achieved with different real-
izations of the relay element. A parameter that, however, turned out to be critical
for the semi transparent mirror configuration for obtaining good synchronization
quality was phase difference between the optical coupling and feedback phases.
While the experiments in the all-optical scheme are not easy to sufficiently control
the synchronization quality [32], using electro-optic systems successful identical
synchronization could be demonstrated experimentally [33].

The results discussed above show that zero-lag synchronization can be achieved
in delay-coupled lasers with a relay element in the center. However, it is not clear
under which conditions this solution is stable, or whether it is even unconditionally
stable because of the common driving of the outer lasers through the relay element.
A detailed stability analysis showed the existence of unstable regimes, in particular
for not sufficiently strong coupling [34]. In addition, it was found that even in large
regimes where the synchronization manifold is transversely stable, characterized by
negative transverse Lyapunov exponents, bubbling can still occur. Bubbling is the
phenomenon of eventual escapes from a synchronization manifold due to an invari-
ant set being transversely unstable. Responsible for the occurrence of bubbling are
saddle points, corresponding to destructive interference conditions of the optical
field in the outer lasers and the incoupled fields. These saddle points are not only cru-
cial for the onset of the coupling-induced dynamical instabilities but also for even-
tual escapes from the synchronization manifold, resulting in bubbling behavior.

9.5
Modulation Characteristics of Delay-Coupled Lasers

9.5.1
Periodic Modulation

The power dropouts exhibited by a single semiconductor laser with optical feedback,
when operating in the regime of low-frequency fluctuations, have been shown to
become periodic when an external modulation is applied to the injection current
[35, 36] or to the feedback strength [37]. The laser response to an external harmonic
modulation, however, is greatly enhanced by coupling [38] (similar to what is found
in general models of nonlinear media [39]). Coupling leads to a very efficient
entrainment, which means that less pump current modulation is needed, and
thus the modulation is practically absent in the output of the coupled system (in
contrast to what happens in single lasers [35]. Thus, in the presence of coupling
the low-frequency dropouts are not distorted, but only entrained.

Figure 9.11 shows the response of a system of two optically coupled lasers
to a variation of the coupling strength, when one of the lasers is subject to a
periodic modulation of its pump current. At the maximum coupling (i.e., when the
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Figure 9.11 Experimental time series of
one of two optically coupled lasers, when
the coupling between the two lasers is de-
creased, which is accomplished by plac-
ing a neutral-density filter between the two

lasers. Relative to the maximum coupling:
(a) 100%, (b) 83.9%, and (c) 45.8%. The
right panels show the corresponding prob-
ability distribution functions of the intervals
between dropouts. From [40].

amount of light that is injected in one laser from the other is maximum given the
experimental conditions, top row in the figure), the two lasers are synchronized
(only the nonmodulated laser output is shown) and perfectly entrained to the
periodic signal. For intermediate values of coupling (middle row), the entrainment
persists, and only when the coupling strength is reduced more than 50% of its
maximum value is the quality of the entrainment noticeably degraded (bottom
row). The results are also given in terms of the probability distribution function
of the time intervals between consecutive dropouts. The irregular shape of this
function in Figure 9.11c indicates loss of entrainment. Thus, for large enough
coupling, the response of the two lasers to a pump modulation of one of them is
a perfect entrainment, with no direct evidence of the current modulation in the
output intensity of either laser, in contrast with the case of a single modulated
laser with feedback, in which case the laser is also fully entrained but the current
modulation is strongly present in the laser’s output [35, 40].

It is also interesting to examine the situation in which both lasers are subject
to external pump modulation with different frequencies. Let us consider, for
instance, the case of two harmonics of a common fundamental f0, defined by
f1 = kf0 and f2 = (k + 1)f0 with k > 1. This is the simplest example of a complex
signal, and previous experimental and theoretical studies have shown that certain
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nonlinear systems subject to this type of complex signal respond at the fundamental
frequency, which is not present in the input. This phenomenon is known as the
missing fundamental illusion, and has recently been interpreted in terms of an
optimal response of excitable systems to a suitable amount of noise, under the
name of ghost stochastic resonance [41].

Ghost resonant behavior occurring in isolated dynamical elements has been
reported experimentally in lasers [42, 43] and electronic circuits [44]. Experiments
have shown that the phenomenon also arises in two coupled lasers, both when the
lasers are stable in the absence of coupling [45] (so that the power dropouts are
induced by coupling), and when the lasers exhibit power dropouts even without
coupling [46] (so that the isolated lasers behave as bona fide excitable systems
[47, 48]). Recent studies in neuronal systems, both theoretical [49, 50] and exper-
imental [51], show that coupling is able to mediate the processing of distributed
inputs in networks of neurons (which possess independent dynamics even in the
absence of coupling). The experiments that we describe in what follows confirm
the existence of this emerging property of excitable networks, using semiconductor
lasers with optical feedback as highly controllable excitable systems.

The behavior of a system of two bidirectionally coupled lasers for k = 2 and
f0 = 5 MHz is shown in Figure 9.12 for increasing amplitudes of the modulation,
assumed equal for both signals. The figure shows the time trace of the intensity
of one of the two lasers on the left, and the probability distribution of the interval
between dropouts on the right (the results are basically identical for the other laser,
since both lasers are synchronized). The interdropout probability distribution is
computed from a collection of 1000 dropouts in each case. For a small modulation
amplitude (top row in Figure 9.12), the dropouts occur infrequently at different
periods. As the amplitude grows (middle row), most interpulse intervals occur at
a definite period T0 corresponding to the fundamental frequency f0, which is not
present in either of the input signals. For larger amplitudes (bottom row), the input
signals take over and dropouts begin to occur at the (larger) input frequencies,
reducing the response of the system at the missing fundamental frequency.
Therefore, a resonant behavior is observed with respect to the modulation strength:
for an intermediate modulation amplitude, the system optimally processes the
distributed inputs. We note that this resonance is nontrivially arising from the
interplay between the direct electrical modulation of the pump current and the
indirect optical driving coming from the other laser.

In the experimental conditions used, the lasers are detuned such that one of
them consistently leads the dynamics, with a time lag equal to the coupling
time [7]. The behavior of the system does not change if the input modulations are
switched between the leader and laggard lasers. It is remarkable that the distributed
signals are processed irrespective of this underlying asymmetry in the coupled
dynamics.

The subharmonic resonance presented above can also be observed at the level
of the RF spectrum of the lasers’ outputs, as shown in the right panels of
Figure 9.12. Peaks of the three frequencies involved, the two (higher) input
frequencies f1 = 10 MHz and f2 = 15 MHz and the fundamental frequency f0 = 5
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Figure 9.12 Experimental output intensity
of one of two coupled lasers (a–c), the cor-
responding probability distribution functions
(PDF) (d–f) of the time intervals between
consecutive dropouts (right column), and
the corresponding RF spectrum of the out-
put intensity (g–i) for increasing values of
the modulation amplitude: (a,d,g) A1 = A2 =
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are f1 = 10 MHz and f2 = 15 MHz, corre-
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is f0 = 5 MHz, corresponding to a period
T0 = 200 ns. Adapted from [46].
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MHz, are clearly observed in the spectrum. The height of the peaks at f1 and f2
increases monotonically with the modulation amplitude (from top to bottom), while
the peak at f0 is highest at an intermediate amplitude, which is a clear indicator of
a resonance occurring at the missing fundamental frequency [41].

9.5.2
Noise Modulation

Over the past decades, much attention in the field of stochastic processes has been
paid to the question of how noise can lead to order [52–54] (see also chapter 11).
In a seminal work, Bryant and Segundo [55] showed that the introduction of white
noise in a neuron model produced an invariance in the firing times. In that study,
repeating stimulations of the neuron with the same segment of Gaussian-white
noise current resulted in a reproducible interspike time response. A similar study
was made in neocortical neurons of rats by Mainen and Sejnowski [56]. They showed
that for constant stimuli the spike trains were imprecise, whereas the introduction
of fluctuations in the stimuli, resembling synaptic activity, produced spike trains
with reproducible timing. In lasers, a good example of the regularity introduced by
noise was given by Uchida et al. [57], who showed the reproducibility of a laser’s
response to a noisy drive signal. Specifically, a noisy signal was sent repeatedly to a
Nd:YAG microchip laser and the system was capable, after a transient, of producing
identical response outputs. For small amplitude of the added noise, the outputs are
not identical, because the relaxation oscillations driven by internal noise dominate
the laser output. There is an optimal noise level for which the outputs are identical,
because the common-noise-driven signal overcomes the internal noise.

Another constructive effect of noise is inducing the synchronization of coupled
systems. This topic has been studied theoretically in coupled chaotic systems
[58–60], and experimentally in chaotic circuits [61]. The common feature in all
these works is that when a certain amount of common noise is introduced, the
coupled systems are driven to collapse onto the same trajectory. This property can
be used to achieve the isochronal solution in a symmetrical bidirectionally coupled
semiconductor laser system, by applying a common source of external noise to
the pump current of both lasers (Figure 9.13). For large enough noise intensity,
the system reaches a common output without lag between them, stabilizing the
isochronal solution.

The left panel of Figure 9.14 shows the correlated dynamics of the two lasers
when the amount of common noise increases. The temperatures of the lasers
are adjusted such that their frequencies are as similar as possible, in order to
optimize the mutual injection. The pump currents and the bidirectional alignment
are then optimized by looking for the maximum enhancement of the output power
due to the mutual injection. The pump currents are fixed slightly above their
solitary threshold, for which the lasers operate in the LFF regime. This regime
allows for an easy observation and measurement of the isochrony during the
experiments.
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Figure 9.13 Experimental setup leading to noise-induced
synchronization. Two semiconductor lasers LD1 and LD2
are coupled by mutual injection, and subject to a common
noise source being applied to their pump currents. Abbrevi-
ations: I.C., injection current; T.C., temperature control; BS,
beam splitter.

With the system symmetrically injected, the same noise source is introduced
simultaneously into the pump current of the two lasers through an internal bias-T
of the laser mounts. In that way, the noise is superimposed to the DC operating
level set by the current controller. The left panel of Figure 9.14 displays the output
intensities and the corresponding cross-correlation functions for increasing values
of the noise level. The output intensities are displaced vertically for clarity, with
the top trace representing the output of LD1 and the bottom trace representing
LD2. Without noise (plots a and b), LFF dynamics can be observed in the output
intensities, and the correspondent cross-correlation function shows a maximum
at a lag equal to the flight time τc between the lasers. The LFF dynamics starts to
disappear as the noise level increases (plot g), even though the cross-correlation
still has its maximum at τc (plot h). Finally, for a large enough noise level (plot i), a
correlation peak arises at zero-lag (plot j). These results show that common noise
is able to induce zero-lag synchronization in mutually coupled lasers.

The zero-lag synchronized state represented in plots (i,j) of the left panel of
Figure 9.14 are nevertheless markedly different from the intrinsic dynamics of the
lasers. In particular, the cross-correlation of the signals shows a broadening of its
maximum peak. In order to determine the origin of this broadening, one can turn to
numerical simulations of the system, which allow for an arbitrarily large temporal
resolution of the dynamics and an infinite bandwidth of the noise being added
to the lasers’ pump currents. Indeed, experimental monitoring of the dynamics
has a resolution that is strongly limited by the bandwidth of the photodetectors
and oscilloscope, and the bandwidth of the common noise is also limited by the
frequency filtering characteristics of the bias-T and laser mount. If we ignore
bandwidth limitations in our experimental system, we can simulate the output
intensities for different noise correlation times and compare the cross-correlation
functions for filtered and unfiltered signals, to find a value that shows isochrony
for both kinds of signals. The correlation time of the noise is known to play an
important role in the dynamics of chaotic lasers [62]. Numerical simulations can be
performed on a Lang–Kobayashi-type model of the two mutually coupled lasers [7].
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Figure 9.14 Left panel: experimental out-
put intensities (a,c,e,g,i) and corresponding
cross-correlation functions (b,d,f,h,j) for
different values of injected noise level (in-
creasing from top to bottom). Right panel:

numerical cross-correlation functions for fil-
tered (top) and unfiltered (bottom) signals
for a fixed noise intensity and varying val-
ues of the noise correlation time (decreasing
from top to bottom).
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The right panel of Figure 9.14 shows the cross-correlation functions of the filtered
(top traces) and unfiltered (bottom traces) time series of the laser intensities, for
decreasing correlation times of the noise. The top trace in Figure 9.14a corresponds
to parameters that approximately match the conditions of the experimental results
shown in plots (i,j) of the left panel of Figure 9.14. The first thing that can be noted
is that the zero-lag peak in the cross-correlation is very small in the case of the
unfiltered signals (bottom trace in plot (a) of the right panel of Figure 9.14). This
shows that the noise acts only in the slow dynamics of the system. As the bandwidth
of the noise increases (i.e., its correlation time decreases, from top to bottom in
the right panel of Figure 9.14), the zero-lag peak in the cross-correlation of the
unfiltered time series starts to increase in amplitude with respect to the side peaks,
until finally for a small enough time correlation (plot d) zero-lag synchronization
arises not only at slow timescales but also in the fast dynamics. This confirms that
the nonzero correlation time of the noise is the cause of the differences between
both types of cross-correlations. For high correlation time of the noise, the system
only reacts to the fluctuations in its slow dynamics, whereas in the limit of very low
noise correlation time both dynamics can respond, for the same noise strength.

9.5.3
Application: Key Exchange Protocol

Coupled semiconductor lasers play an important role in many applications. Among
them longitudinal coupled-cavity lasers (e.g., C3 lasers) have been used for spectral
selection; coherent coupling allows for high output power with good spectral and
beam properties; laterally coupled laser arrays have been realized to also achieve
coherent coupling. As presented in the previous sections, a delay in the coupling
path introduces dynamical instabilities and particular synchronization properties
that can be harnessed for applications. Delayed-coupling configurations are being
considered for applications in encrypted communication (see also chapter 14).
In [63], a novel key exchange protocol has been suggested, utilizing the synchro-
nization properties of two mutually delay-coupled semiconductor lasers with the
semitransparent mirror as relay element, as depicted in Figure 9.15.

m1(t)

SL1

PD

PD

M

tm,1

tm,2kf,1+k2,1

kf,2+k1,2

SL2

m2(t)PD

PD

{ } { }

{ }{ }

Figure 9.15 Scheme of two mutually coupled semiconduc-
tor lasers with a partially transparent mirror as relay ele-
ment. m1,2 encoding messages. Adapted from [63].
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In the system of Figure 9.15, an identical synchronization between the two cou-
pled lasers is possible, that is, the cross-correlation function exhibits the maximum
peak at a time lag that amounts to the difference between the coupling times of
both lasers with the mirror �t = τm,2 − τm,1. The maximum of the cross-correlation
can be zero when the mirror is displaced to the center (τm,2 = τm,1). This scheme
allows for a bidirectional transmission of information since a small, short pertur-
bation of the bias current of any of the lasers only deteriorates momentarily the
synchronization between the optical output powers P1 and P2 [63]. The commu-
nication process is illustrated in Figure 9.16 where the bias currents of the lasers
are simultaneously modulated with different pseudorandom digital messages of
small amplitude. When both parties of the communication send the same bit
of information by modulating the bias current, the synchronization difference
between the powers emitted by the two lasers with a time lag [P1(t) − P2(t + �t)]
is ideally zero. In this way, both sides of the link can negotiate and exchange
an encrypted key through a public channel. The security of the communication
is guaranteed by the fact that an eavesdropper can only monitor the difference
P1(t) − P2(t + �t) and has no clue as to which are the bits being sent when this
difference is zero.

Also, further schemes for public channel cryptography based on chaos synchro-
nization of mutually delay-coupled systems have been proposed. In principle, they
might suffer from two different kinds of attacks. Hardware attacks utilize a chaotic
setup similar to those of the synchronized chaotic partners, whereas software at-
tacks might be based on the mathematical manipulation of the recorded signal. In
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Figure 9.16 Illustration of the message
decryption process. m1,2 are the messages
encoded by SL1,2, m1(t) − m2(t + �t) is the
subtraction of the messages with a time
lag �t, and this message subtraction is

reconstructed by the synchronization error
P1(t) − P2(t + �t). The synchronization error
has been filtered with a fifth-order Butter-
worth filter with a cutoff frequency of 0.8
GHz.
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order to exclude advanced software attacks, the task of the attacker can be mapped
onto a NP-complete problem. An elegant method utilizing private commutative fil-
ters, transmission of integer signals, additional nonlinear terms to the transmitted
signal, and periods of cutoffs in communication, has been introduced in [64].

Finally, networks of delay-coupled lasers are currently being studied for the
realization of novel information processing concepts, being inspired by neuronal
systems. They are expected to represent a suitable reservoir for the realization of a
liquid state machine. This illustrates that delay effects might become very useful,
improving existing applications or allowing for novel applications.

9.6
Conclusion

Delay-coupled systems are ubiquitous in both natural and technological settings.
The signals that connect dynamical systems do not propagate instantaneously,
and when those dynamical systems are fast enough, the propagation time of the
coupling signals cannot be neglected. This occurs in diverse systems ranging
from the brain (whose neurons operate in timescales of the order of milliseconds,
whereas neuronal signals take tens of milliseconds to propagate over distances of
centimeters) to semiconductor lasers in communication networks (which operate
on timescales of tens of picoseconds, whereas light takes nanoseconds to travel
over distances of centimeters). Besides their undeniable technological interest,
delay-coupled semiconductor lasers constitute well-controllable test beds to study
the effect of delay coupling. In particular, delay-coupled semiconductor lasers show
a rich phenomenology of dynamical properties and synchronization scenarios,
some of which have been reviewed in this chapter. In addition, we have illustrated
here the application potential of different delay-coupling configurations. For in-
stance, we have presented how bidirectionally coupled lasers might be used for
implementing a key exchange protocol based on synchronized chaotic behavior.

The configurations discussed in this chapter represent only a few possibilities
among the many more that are possible. Motivated by the coupling configurations
described here, more complicated network arrangements of many delay-coupled
lasers, or other delay-coupled oscillators, could be realized (see also chapter 10).
This perspective, in particular, represents a very promising and challenging field
of study, which might help us to understand, for instance, certain aspects of
brain dynamics, and even more to explore and realize bioinspired concepts of
information processing, such as reservoir computing.
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J., and Mirasso, C.R. (2001) Chaos
synchronization and spontaneous
symmetry-breaking in symmetrically
delay-coupled semiconductor lasers.
Phys. Rev. Lett., 86 (5), 795–798.

8. Fujino, H. and Ohtsubo, J. (2001) Syn-
chronization of chaotic oscillations in
mutually coupled semiconductor lasers.
Opt. Rev., 8, 351–357.

9. Wünsche, H.J., Bauer, S., Kreissl,
J., Ushakov, O., Korneyev, N.,
Henneberger, F., Wille, E., Erzgräber,
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36. Buldú, J.M., Garcı́a-Ojalvo, J., Mirasso,
C.R., and Torrent, M.C. (2002) Stochas-
tic entrainment of optical power
dropouts. Phys. Rev. E, 66 (2), 021106.

37. Lam, W., Guzdar, P.N., and Roy, R.
(2003) Effect of spontaneous emission
noise and modulation on semiconduc-
tor lasers near threshold with optical
feedback. Int. J. Mod. Phys. B, 17,
4123–4138.



References 243

38. Buldu, J.M., Vicente, R., Perez, T.,
Mirasso, C.R., Torrent, M.C., and
Garcia-Ojalvo, J. (2002) Periodic entrain-
ment of power dropouts in mutually
coupled semiconductor lasers. Appl.
Phys. Lett., 81 (27), 5105–5107.

39. Lindner, J.F., Meadows, B.K., Ditto,
W.L., Inchiosa, M.E., and Bulsara,
A.R. (1995) Array enhanced stochastic
resonance and spatiotemporal syn-
chronization. Phys. Rev. Lett., 75 (1),
3–6.
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Complex Networks Based on Coupled Two-Mode Lasers
Andreas Amann

10.1
Introduction

The topic of semiconductor lasers attracts the attention of experts across a number
of different fields. On one hand the commercial success of semiconductor lasers,
for example, in medicine or telecommunication drives the development of highly
optimized devices with very specific output characteristics. On the other hand,
lasers are paradigmatic examples of nonlinear systems and play a decisive role in
the development of nonlinear dynamics into a cross disciplinary subject over the
last 40 years [1].

Already a free running laser represents a nontrivial nonlinear system [2]. Even
more interesting are the phenomena that arise when the light of one laser (the
master) influences the dynamics of a second laser (the slave) [3]. This injection
dynamics can, for example, result in the locking of the frequency of the slave to the
master [4, 5], in excitability [6, 7], coexistence of complex attractors [8, 9], switching
between bistable states [10–12], or chaotic synchronization [13, 14]. In a closed loop
system, where either the light is reflected back into a laser or two or more lasers are
mutually coupled, the time delay due to the round-trip time induces external-cavity
modes [15], compound laser modes [16] or may be able to stabilize unstable steady
states noninvasively [17].

In the case of single-mode lasers, the dynamical properties due to optical injection
have been widely studied in the past and are today, in general, well understood.
For a comprehensive review, we refer to [18]. The objective of the current chapter
is to explore some of the properties of multimode and, in particular, two-mode
lasers. This chapter is organized as follows. In order to motivate our interest in
multimode lasers, we discuss the new possibilities, which exist for the construction
of complex networks using multimode lasers in Section 10.2. In Section 10.3, we
give an overview of the design of multimode lasers, which involves the solution
of an inverse problem. We then study the basic properties of the dynamics of
two-mode lasers under optical injection in Section 10.4, and finally give a summary
and outlook in Section 10.5.
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© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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10.2
Complex Networks on the Basis of Two-Mode Lasers

While over the last decade the technology for transmitting information by photonic
means has been considerably improved, the problem of convenient all-optical signal
processing remains a major challenge in photonics. In order to process information
within the optical domain, it would, in general, be desirable to implement a relatively
sophisticated connection topology, that is, a complex network of coupled lasers.
Ideally such complex networks would be integrated on a single chip, which seems
to be difficult to achieve on the basis of single-mode lasers. The reason is that
each coupling needs to be implemented via a physical optical-fiber link between
the individual lasers. Since today no scalable technology is available that allows
for arbitrary connections between lasers on a chip, the optical-fiber links need to
be connected ‘‘by hand,’’ and only networks with a relatively small number of
single-mode lasers have been realized so far.

Surprisingly, the use of multimode lasers is potentially able to overcome some
of the limitations faced by networks of single-mode lasers. In order to understand
the basic principle, let us consider the setup of four individual two-mode lasers as
in Figure 10.1. On the level of optical-fiber coupling the four lasers are coupled
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Figure 10.1 (a) Physical-coupling scheme
via optical-fiber coupling for four two-mode
lasers. The all-to-all coupling is realized via
a wavelength multiplexer, which collects the
light from the individual lasers into a single
wave guide, which is terminated by a mirror.
(b) Schematic view of the selected modes
for each laser diode. (c) The resulting ab-
stract network topology due to the physical

all-to-all coupling as in panel (a) and the
mode spectrum of panel (b). (d) By repre-
senting the individual two-mode lasers with
square-shaped nodes and individual modes
with the circular nodes the network from
(c) is converted into a bipartite network. In
the current example of two-mode lasers, the
equivalent conventional network with links
between nodes is shown in (e).
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in the way as depicted in Figure 10.1a. The output of each laser is collected by an
optical multiplexer into a single optical fiber, which is then terminated by an optical
mirror. As a consequence, light from each laser is injected back into every other
laser and also into itself. In contrast to an arbitrary optical fiber network topology,
a simple all-to-all connection of lasers as shown in Figure 10.1a is feasible using
today’s optical integration technology.

In spite of the trivial coupling on the optical-fiber level, the setup shown in
Figure 10.1a, nevertheless, realizes a nontrivial optical network topology. The
reason is that the four lasers in this example are in fact two-mode lasers. Each
individual laser is able to emit light at two different wavelengths simultaneously.
The crucial point is now that the emission wavelengths (modes) can be chosen
differently for each laser. This is schematically shown in Figure 10.1b. In this case,
for example, laser (1) is chosen to emit light at modes (B) and (C), while laser
(2) emits at modes (B) and (D). Owing to the mutual coupling between the lasers
(Figure 10.1a), laser (1) therefore, in particular, injects light at modes (B) and (C)
into laser (2). Since laser (2) is tuned to emit at modes (B) and (D), only light
with frequency close to these modes will be able to affect the local dynamics on
laser (2). Let us now assume that the frequency difference between the mode (C)
and either of the modes (B) or (D) is much greater than the relaxation oscillation
frequency, which sets the scale for the local dynamics on laser (2). Then the light
of mode (C) from laser (1) is effectively ignored by laser (2), and only the light
emitted at mode (B) will be able to affect the dynamics of laser (2). In the network
topology graph shown in Figure 10.1c, this is reflected by the link labeled with (B).
The nodes in this graph represent the modes that are selected as the lasing modes
for an individual laser. The modes which are selected for a given laser are both
affected by the local carrier dynamics on that laser. This establishes a dynamical
connection between the selected modes through the laser itself. In Figure 10.1c,
the lasers labeled from (1) to (4) are therefore represented as links between the
nodes.

While Figure 10.1c gives in principle the complete information about the network
topology, this type of graph does not follow the usual conventions of network theory,
since it contains links of two different types. We can transform the topology of
the graph into the network shown in Figure 10.1d. Here the individual modes are
represented by circular nodes, while the lasers are represented by square-shaped
nodes. A link, for example, from the square node (1) to the circular node (B)
corresponds to the fact that mode (B) is selected on laser (1). A network with
two types of nodes and links between different types of nodes is called a bipartite
network. In the current example, we have used two-mode lasers. In the language of
the bipartite network (Figure 10.1d), this means that every square node has exactly
two links. In this case of two-mode lasers, the network topology can be represented
by a conventional network graph as shown in Figure 10.1e. We can interpret this
graph as a network in mode space, since the nodes in this network represent the
optical modes in frequency space. The links represent the individual lasers that
select the corresponding modes.
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Note that although we have used only four two-mode lasers with trivial
optical-fiber coupling as shown in Figure 10.1a, the resulting network topol-
ogy (Figure 10.1c) shows a surprising complexity. In particular, we have one node
(node (D)) with degree 3, since there are three lasers which select that particular
node. In principle nodes with arbitrarily large degree are possible by simply adding
more lasers that lase on that particular wavelength. The topology of the network
is encoded in the way the modes are selected on the individual lasers. From the
technological point of view, this means that in order to implement the ideas of
Figure 10.1, a scalable method is required that is able to reliably yield a large
number of lasers with individually predefined active optical modes. We will briefly
introduce a method that is able to achieve this goal in the next section.

From the modeling point of view, a system as shown in Figure 10.1b is a system
of two-mode lasers with mutual optical injection. The first step to understand
this system will therefore consist of understanding the injection dynamics of
two-mode lasers, in general. Some results in this direction will be presented in
Section 10.4.

While one motivates to implement a network along the ideas presented in
this section is the desire to process optical signals without converting them
into electronic signals, a successful implementation would also be relevant for the
theory of complex networks itself, which is currently vigorously developing [19–21].
Currently the predictions of complex network theory are almost exclusively verified
using data, which is either generated numerically on a computer or collected
from preexisting networks, such as the brain or the Internet, whose properties
or topologies cannot be easily altered. Using the ideas of the current section,
a nonlinear complex network with a predefined topology could in principle be
implemented, which would provide an important and flexible test bed for the
general theory of complex networks.

10.3
The Design Principles of Two-Mode Lasers

Multimode lasers are able to emit light at more than just one single wave length
simultaneously. A simple example of a multimode laser is the Fabry–Perot laser,
which typically lases at several tens of optical wave lengths (modes). A schematic
view of a Fabry–Perot laser is shown in Figure 10.2, with an active region of

E +
w E +

w
E +

w

Lc
z0

E −
w

E −
w E −

w

rL
rR

n1

Figure 10.2 Schematic view of a Fabry–Perot laser.
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refractive index n1 and effective gain g enclosed by two mirrors of reflectivity rL and
rR at both ends. Denoting by E+

ω (z) and E−
ω (z) the right and left moving electric

fields at position z for fixed frequency ω, we can introduce a transfer matrix T that
connects the electric fields at both ends of the cavity by(

E+
ω (εz)

E−
ω (εz)

)
= T

(
E+

ω (Lc − εz)

E−
ω (Lc − εz)

)
. (10.1)

Here εz and Lc − εz denote positions just inside the optical cavity at the right
hand end and left hand end, respectively. We are interested in the situation of a
free running device without any external optical injection and therefore we set the
incoming fields to zero, that is, E+

ω (−εz) = E−
ω (Lc + εz) = 0. This translates into

the conditions

E+
ω (εz) = rRE+

ω (Lc − εz) , rLE−
ω (εz) = E−

ω (Lc − εz) .

Then Eq. (10.1) can be written in the form

μ

(
rL

1

)
= T

(
1
rR

)
, (10.2)

with some arbitrary complex number μ. In the case of the Fabry–Perot laser, we
have a homogeneous medium of refractive index n1 and effective gain g, and the
transfer matrix is explicitly given by

T =
(

exp
(− (

i n1ω

c − g
)

Lc
)

0
0 exp

((
i n1ω

c − g
)

Lc
) )

= exp
(−ik1Lcσz

)
(10.3)

where the complex wave vector is given by k1 = ω
c nj − ig, and the Pauli matrices

are defined as

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Inserting T from Eq. (10.3) into Eq. (10.2) and eliminating μ then yields

rLrR = exp
(−2ik1Lc

)
. (10.4)

Requiring purely real ω, we obtain the familiar text book lasing condition [22]

rLrR exp
(
2gLc

) = 1.

It is now useful to consider for a given g the solutions of Eq. (10.4) in the complex
ω plane which can be expressed as

τRω0
m = 2mπ + i

(
ln (rLrR) + 2gLc

)
for m = 1, 2, . . . (10.5)

where we define the round-trip time τR = 2nLc/c. The imaginary parts of the
Fabry–Perot frequencies ω0

m determine the decay times of the individual modes,
and are negative below lasing threshold. In principle g and to some extend also τR

also depend on ω, and therefore Eq. (10.5) is an implicit equation for ω. However, it
turns out that this dependence is usually only weak and the imaginary part of ω0

m is
almost constant for a large number of modes as schematically shown in Figure 10.3.
This is the reason why for a typical Fabry–Perot laser many modes reach threshold
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Figure 10.3 Schematic plot of the Fabry–Perot frequencies
ω0

m according to Eq. (10.5) close to some m0 with maximal
gain g.

almost simultaneously. In practice, this behavior is often not desired, and in the
light of the discussion in Section 10.2, one would ideally like to control which of
the many candidate modes reach the threshold first.

An innovative method to achieve this goal was proposed by O’Brien and O’Reilly
in [23]. This method introduces a number of perturbative features along the cavity
in such a way that the refractive index is changed at well-defined positions. Techno-
logically such features are realized using slots on the cavity wave guides, which can
be positioned with subwavelength accuracy. These slot features alter the threshold
of the already existing Fabry–Perot modes. This is in contrast to the commonly
used distributed feedback (DFB) or distributed Bragg reflector (DBR) methods of
mode selection, which introduce modes that are, in general, incommensurate with
the existing Fabry–Perot modes. By using an inverse method, the positions of the
features can be calculated to fit a desired gain profile. This was used in [23] to
demonstrate the operation of a single-mode laser based on this principle, and was
subsequently generalized for the two-mode [24] and multimode case [25]. For more
details on the theoretical approach, see [26].

To understand the basic idea of this method, let us first consider the effect of
a single feature of length L and refractive index n2 centered at some position z1

along the cavity as depicted in Figure 10.4. Our aim is now to calculate the change
induced by this feature in linear order of δn = n2−n1

n1
. The transfer matrix T can be

Lc
z0

rL rR

n1

z1

L

n2

Figure 10.4 Fabry–Perot cavity with one additional feature of length L at position z1.
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calculated as [26]

T = P1

(
z1 − L

2

)
F (L) P1

(
Lc −

(
z1 + L

2

))
where

F (L) = T12P2 (L) T21

is the transfer matrix for the feature of length L. Here Tjk denotes the transition
matrix between media with different refractive indices nj and nk, and Pj (z) denotes
the propagation within a medium with homogeneous refractive index nj. Explicitly
they are given by

T21 = 1
2

(
1 + n1

n2
1 − n1

n2
1 − n1

n2
1 + n1

n2

)
, T12 = T−1

21 , Pj (z) = exp
(−ikjzσz

)
.

Using straightforward algebra, F (L) can be calculated as

F (L) = T12P2 (L) T21 = cos
(
k2L

) − sin
(
k2L

) (
q−σy + q+σz

)
(10.6)

where q+ = (
q + q−1

)
/2 and q− = (

q − q−1
)
/2 with q = n1/n2. Let us now assume

that the length of the feature fulfills the half wavelength condition sin
(
k2L

) = 1,
then in first-order δn the transfer matrix for the feature can be written as

F (L) ≈ δnσy + σz = P2

(
L

2

) (
1 + δnσy

)
P2

(
L

2

)

≈ P1

(
L

2

) (
1 + δnσy

)
P1

(
L

2

)
where in the last approximation we have assumed that the influence of the feature
on the optical path length can be neglected. This allows us to write the transfer
matrix for the Fabry–Perot cavity with one additional feature as

T ≈ P1 (Lc) + δnσyP1 (Lc − 2z0)

where we have used the useful relation

P1 (z) σy = σyP1 (−z) ,

which follows from the anticommutation properties of the Pauli matrices. The
condition of zero incoming field Eq.(10.2) can again be used to find a condition for
the available modes. In this case, we obtain

Q (ω, δn) = T11 + T12rR − T21rL − T22rLrR = 0

and of course for δn = 0, we know that the Fabry–Perot modes ω0
m defined in Eq.

(10.5) to fulfill this equation, that is,

Q
(
ω0

m, 0
) = 0.

The question is now, how do the modes ωm change as we increase δn. Let
us therefore assume that ωm (δn) are functions of the strength of the index
perturbation δn. Then we can write in linear order

ωm (δn) = ω0
m + ∂ωm

∂δn

∣∣∣∣
δn=0

δn + O
(
δn2) .
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Using the implicit function theorem, we obtain

∂ωm (δn)

∂δn

∣∣∣∣
δn=0

= −
∂Q
∂δn

∣∣∣
δn=0; ω=ω0

m

∂Q
∂ω

∣∣∣
ω=ω0

m

. (10.7)

Since we are mostly interested in changes of the threshold of individual modes and
less in their frequency modulation, we concentrate on the imaginary part of Eq.
(10.7) and using the normalized feature position Z1 = z1/Lc, we obtain

Im
∂ωm (δn)

∂δn

∣∣∣∣
δn=0

= − 2

τR
sinh

[
Z1

(− ln rL
) + (1 − Z1) ln rR

]
sin (2πmZ1) .

(10.8)

This means that the influence of a single feature on the threshold of individual
modes m is essentially given by a product of two factors. The ‘‘sinh’’ factor shows
that features close to the border of the cavity tend to be more efficient than features
toward the center of the cavity. For equal mirror reflectivities rL = rR, we even find
that a feature at the center of the cavity does not change the threshold of any mode
in the linear order of δn. While the ‘‘sinh’’ factor is identical for all modes m, the
‘‘sin’’ factor in Eq. (10.8) is crucial for differentiating between modes. Let us write
this factor using the notation m = m0 + 	m, where m0 is a central mode as shown
in Figure. 10.3. Then we obtain

sin (2πmZ1) = sin 2πm0Z1 cos 2π	mZ1 + cos 2πm0Z1 sin 2π	mZ1.

Each term is a product of a fast varying and a slowly varying factor. The feature
will be placed most efficiently for the mode m0 and close by modes if we choose
sin 2πm0Z1 = 0, which can always be achieved by a very small variation of Z1,
since m0 � 1, and therefore cos 2πm0Z1 = ±1. With this stipulated ‘‘fine tuning’’
of the position Z1, we obtain

Im
∂ωm0+	m

∂δn

∣∣∣∣
δn=0

= ± 2

τR
sinh

[
Z1

(− ln rL
) + (1 − Z1) ln rR

]
sin 2π	mZ1.

So far we have only considered the effect of a single feature. However, since we only
consider effects which are linear in δn, the transition to many features is simply a
sum over the effect of N independent features at normalized positions Zk, and we
obtain

q	m = Im
∂ωm0+	m (δn)

∂δn

∣∣∣∣
δn=0

(10.9)

= − 2

τR

N∑
k=1

sinh
[
Zk

(− ln rL
) + (1 − Zk) ln rR

]
sk sin 2π	mZk (10.10)

with sk = ±1. This transition to many features in linear order of δn is equivalent to
a first-order Born approximation in scattering theory. For given sk and Zk ∈ [0, 1],
we can use Eq. (10.9) to calculate how much a mode m0 + 	m moves closer to the
threshold in linear order of δn.
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The practical problem that we have to solve is, however, not how the gain profile
is modulated for given slot positions, but how to obtain the slot positions if the
gain profile is given. This means that we need to solve the inverse problem of
Eq. (10.9). If we are given a series of numbers q	m representing a desired gain
profile for a range of values of 	m, then we have to find the positions Zk which
yield those numbers as closely as possible. The key to the solution of this inverse
problem is the observation that Eq. (10.9) is in a form which resembles a Fourier
series. Writing formally the sum on the right hand side as an integral over a feature
density function f (Z) = ∑

kδ (Z − Zk) sk, we obtain

q	m = − 2
τR

∫
f (Z) sinh

[
Z

(− ln rL
) + (1 − Z) ln rR

]
sin (2π	mZ) dZ.

For given q	m, we can then invert the Fourier transform to obtain the feature
density function f (Z) . From f (Z) the positions Zk and signs sk can then be

obtained via sampling, that is, solving the equation of
∫ Zk

0

∣∣f (Z)
∣∣ dZ = k/M, where

M is an appropriate normalization constant and sk = signf (Zk) . For further details
on how to choose the gain profile q	m and a more careful consideration of higher
order terms, we refer to [26].

Using this method it is, for example, possible to design a single-mode laser [23]
or a two-mode laser [24] with side mode suppression ratios of more than 40 dB and
a mode spacing in the terahertz regime. For a larger number of selected modes,
phenomena, such as mode locking, have been observed [25].

10.4
The Dynamics of Two-Mode Lasers Under Optical Injection

In the previous Section 10.3, we have introduced one practical way to select a
number of predefined modes. Let us now return to our original motivation of
constructing a complex network using two-mode lasers, which was elaborated
in Section 10.2. The general dynamics of mutually coupled multimode lasers is
complicated and the subject of current research. However, for the simpler case
of optical injection from a single-mode master laser with constant output into a
two-mode slave laser, many of the fundamental dynamical features are theoretically
well understood and experimentally verified. It is the purpose of the current section
to review the theoretical description in this case.

10.4.1
The Model Equations

A suitable model that can be used to describe the optical injection into the two-mode
laser is of the form [27]

Ė1 = 1

2
(1 + iα)(g1(2n + 1) − 1)E1, (10.11)

Ė2 =
[

1

2
(1 + iα)(g2(2n + 1) − 1) − i	ω

]
E2 + K, (10.12)
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Tṅ = J − n − (1 + 2n)
(
g1|E1|2 + g2|E2|2

)
, (10.13)

where the nonlinear gain terms are given by

g1 = [
1 + ε

(|E1|2 + β12|E2|2
)]−1

, g2 = [
1 + ε

(|E2|2 + β21|E1|2
)]−1

. (10.14)

The dynamical quantities in the Eqs. (10.11)–(10.13) are the complex electric
field variables E1 (t) and E2 (t) for each mode and the real variable n (t), which
characterizes the number of electron-hole pairs available for both modes. The
optical injection is given by the injection strength K and the detuning parameter
	ω. Further device-specific parameters are the line width enhancement factor
α, the ratio of carrier and photon lifetime T and the pump current J. We also
include self and cross saturation terms, which are characterized by parameters ε,
β12, and β21. All dynamical quantities and parameters are rescaled to convenient
dimensionless units. Typical parameter values are α = 2.6, T = 800, J = 0.5,
ε = 0.01, and β12 = β21 = 2/3 [27]. The time variable in Eqs. (10.11)–(10.13) is
measured in units of the photon cavity lifetime τc, where we use the value of
τ−1

c = 9.8 × 1011s−1 to compare with experimental data.
Note that the complex phase of E1 does not couple to any other quantity, and

therefore the phase space of the system (Eqs. (10.11)–(10.13)) is a four-dimensional
system of ordinary differential equations and can be parametrized by the four
real coordinates {|E1| , ReE2, ImE2, n}. Since Eq. (10.11) implies that d

dt |E1| = 0,
whenever |E1| vanishes, the single-mode manifold with |E1| = 0 is an invariant
submanifold of the system (Eqs. (10.11)–(10.13)).

At this point it is useful to compare our system with the well-studied system for
an optically injected single-mode laser [18], which can be written in the form

Ė = (1 + iα)nE − i	ωE + K, (10.15)

Tṅ = J − n − (1 + 2n)|E|2, (10.16)

where now E refers to the complex field of the single mode, and the other
parameters are as before. By comparing both systems, we find that if we neglect
the nonlinearity in the gain term (i.e., put ε = 0) the system (Eqs. (10.11)–(10.13))
is a minimal extension of the well-tested single-mode system (Eqs. (10.15) and
(10.16)) and contains all of its dynamics within the invariant manifold |E1| = 0. We
therefore want to first discuss some of the analytic properties of the model (Eqs.
(10.11)–(10.13)) in the case of ε = 0

10.4.2
The ε = 0 Case

Using the notation Ej = Aje
φj , we can then rewrite the Eqs. (10.15) and (10.16) in

explicitly four-dimensional form

Ȧ1 = nA1, (10.17)

Ȧ2 = nA2 + K cos φ2, (10.18)
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φ̇2 = αn − 	ω − K

A2
sin φ2, (10.19)

Tṅ = J − n − (1 + 2n)
(
A2

1 + A2
2

)
. (10.20)

Let us first consider the equilibria of this system of equations. From Eq. (10.17), it
follows that either (i) A1 = 0 or (ii) n = 0 holds at the equilibrium.

In case (i), we are in the single-mode submanifold, and due to Eq. (10.17)
equilibria with A1 = 0 can only be stable if n < 0. With this restriction the analysis
proceeds along the lines of the analysis of the single-mode case [28, 29]. Using
the Routh–Hurwitz stability criteria for the characteristic polynomial of the Jacobi
matrix of Eqs. (10.17)–(10.20), we then obtain the region in the K − 	ω plane
for which stable single-mode equilibria exist. While parametric representations
(K (n) , 	ω (n)) of the boundaries of this region can be obtained, it is more
convenient to consider explicit expressions of the boundaries in the form of K (	ω)

which are valid in the limit of T � 1 [28]:

K =
√

J

α2 − 1

[(
1 + α2

)
T2

(
1 + 2J

)2 − 4α	ω

T

(
1 + 2J

) + (
1 + α2)	ω2

]1/2

for 	ω ≤ 1 + 2J

αT
, (10.21)

K = −
√

J

1 + α2
	ω for 	ω ≤ 0, (10.22)

K = √
J	ω for 0 ≤ 	ω ≤ 1 + 2J

αT
. (10.23)

Here Eq. (10.21) parameterizes the single-mode Hopf bifurcation, and Eq. (10.22)
yields the saddle-node bifurcation. The line of the transcritical bifurcation Eq.
(10.23) is a consequence of solving the system (Eqs. (10.17)–(10.20)) for equilibria
with n = 0 and A1 = 0.

While case (i) still deals essentially with the bifurcations of the single-mode
system, the bifurcations of case (ii) where n = 0 and A1 �= 0 are of genuine
two-mode character. The two-mode equilibria are of the form

A2 = K

|	ω| , φ2 = ±π

2
, A1 =

√
J −

(
K

|	ω|
)2

. (10.24)

The Jacobian DF of Eqs. (10.17)–(10.20) is then given by

DF =

⎛
⎜⎜⎝

0 0 0 A1

0 0 A2 (	ω) A2

0 −A−1
2 (	ω) 0 α

−T−12A1 −T−12A2 0 −T−1
(
1 + 2J

)

⎞
⎟⎟⎠ ,

and the characteristic polynomial is of the form

P (λ) = λ4 + T−1 (
1 + 2J

)
λ3 + (

	ω2 + T−12J
)
λ2

+T−1

((
1 + 2J

)
	ω2 + 2

K2

	ω
α

)
λ + T−1 (

J2	ω2 − K2) . (10.25)
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We can then use the ansatz P (λ = iωh) = 0 for the Hopf bifurcation and obtain
from the imaginary part of Eq. (10.25)

ω2
h =

(
	ω2 + 2αK2

	ω
(
1 + 2J

)
)

.

Using the real part of Eq. (10.25) then yields the desired explicit expression for the
Hopf boundary of the two-mode state

2αK2

1 + 2J
= −	ω3 + 1 + 2J

αT
	ω2 + 2

T
J	ω. (10.26)

Note that in contrast to the expressions in the single-mode case (Eqs. (10.21) and
(10.22)), this expression is exact.

In Figure 10.5, the analytically obtained bifurcation lines (Eqs. (10.21)–(10.23))
and Eq. (10.26) are shown. We note that the Hopf bifurcation line for the two-mode
equilibria has two branches. Interestingly, the two-mode Hopf branch for negative
	ω crosses the single-mode saddle-node bifurcation line at strongly negative
	ω. This means that in the region denoted by ‘‘TM + SM’’ in Figure 10.5, a
two-mode and a single-mode equilibrium state coexist. This theoretical prediction
bistability was indeed found experimentally in [31] and it turned out that switching
between the bistable states can be achieved by purely optical means. This allowed
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Figure 10.5 Bifurcation diagram for ε = 0
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(Eq. (10.21)) and (Eq. (10.22)). The transcrit-
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Hopf bifurcation (Eq. (10.26)).
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for the realization of an all-optical memory element on the basis of a two-mode
laser.

10.4.3
The Finite ε Case

A further feature of the analytic bifurcation diagram for ε = 0, which is evident
from Figure 10.5 is that the two-mode equilibrium state extends up to K = 0. Since
according to Eq. (10.24), however, A2 is proportional to K, this means that for
sufficiently negative 	ω, and vanishingly small K, the second mode of the laser
locks and is at the same time strongly suppressed. This is, however, not what is
observed experimentally, where in all cases a finite injection strength is needed to
obtain locking, and the injected mode cannot be suppressed arbitrarily. One way to
solve this problem is to introduce cross- and self-saturation term proportional via a
nonvanishing nonlinear gain parameter ε in Eq. (10.14).

While in the case of the single-mode model, it is common wisdom [18, 32] that
the nonlinear gain term is not essential to explain the observed dynamical features,
this is different in the two-mode case. This is demonstrated in Figure (10.6),
which shows the bifurcation diagram in the (K, 	ω) plane for ε = 0.01, which was
calculated using AUTO [30]. We observe that although ε is small, the two-mode
Hopf bifurcation line is severely affected, and does not extend to arbitrary small
values of K anymore. This is in good agreement with experimental data, and we
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Figure 10.6 Bifurcation diagram for ε =
0.01 obtained with the numerical contin-
uation software AUTO [30]. SM and TM
correspond to regions with single-mode
and two-mode equilibria, respectively. The
dotted lines (TC) denote transcritical tran-
sitions from single-mode to two-mode

solutions. Solid lines and dashed lines mark
two-mode and single-mode bifurcations,
respectively. The bifurcation types shown
are torus (TR), period doubling (PD), sad-
dle node (SN), Hopf (HB), and saddle node
of limit cycle (SNL) bifurcation (after [27]).
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therefore conclude that the nonlinear gain terms are an important feature of the
model equations (Eqs. (10.11)–(10.14)) [27, 31] at least for small injection K.

Using AUTO, it is possible to also study the bifurcations of limit cycles. In
Figure 10.6, we show a number of bifurcation lines for limit cycles. We thereby
restrict ourselves to the bifurcations that involve at least one stable object, which
becomes unstable. We observe that bubbles of period-doubling bifurcations occur
which are in a similar way known in the single-mode context [18]. The interesting
feature is the transition from the single-mode to two-mode states, which occurs
along the transcritical dotted lines.

Let us now study the dynamics at a fixed injection strength K = 0.008 and
varying values of 	ω along the arrow in Figure 10.6. In Figure 10.7, we show the
calculated power spectrum of the total light output, which has been experimentally
confirmed with astonishing accuracy in [27]. The many interesting features in the
power spectrum of Figure 10.7 can be explained by considering the time traces at
different points along the arrow in Figure 10.6. In Figure 10.8, the time trace in the
region of the two- mode locked state at 	ω = −8 GHz is shown. Evidently both
modes are constant and nonzero and the power spectrum in Figure 10.7 shows
no features at this position below the first Hopf bifurcation denoted by HB. As we
increase the detuning to 	ω = −7 GHz, we pass the two-mode Hopf bifurcation
and observe the oscillating dynamics of a stable limit cycle in the time trace shown
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Figure 10.8 Time trace of the system (Eqs.
(10.11)–(10.13)) for K = 0.008 and 	ω = −8 GHz.
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Figure 10.9 As shown in Figure 10.8 except for 	ω = −7 GHz.

in Figure 10.9. Consequently, in the power spectrum shown in Figure 10.7, a
new peak close to the relaxation frequency ωRO ≈ 5.5 GHz appears, which is also
reflected at twice this value due to the appearance of second-order harmonics.

As we increase the detuning to 	ω = −6.2 beyond the two mode torus bifur-
cation, a low frequency (<1 GHz) appears in the frequency spectrum and gives
rise to a seemingly quasi periodic dynamics as shown in Figure 10.10. This low
frequency also shows up as satellite peaks around the still present relaxation fre-
quency component. This frequency then tends toward zero as we further increase
	ω and gives rise to the typical starlike feature in the spectrum as we approach the
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Figure 10.10 As shown in Figure 10.8 except for 	ω = −6.2 GHz.
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Figure 10.11 As shown in Figure 10.8 except for 	ω = −5 GHz.

saddle-node of the limit cycle (SNL) bifurcation line from below. Beyond the SNL
line, the uninjected mode is switched of, but the dynamics in the injected mode
remains complicated, as shown, for example, in Figure 10.11.

Further increase in 	ω finally leads to the single-mode locked state (time trace
not shown) via the well-known single-mode saddle-node (SN) bifurcation. The
locked state persists until the single-mode Hopf bifurcation (HB) occurs. At this
point a stable single-mode limit cycle is born with a dominating frequency close
to the relaxation frequency. A time trace of a limit cycle in the region is shown in
Figure 10.12. Further increase in the detuning frequency leads to the well-known
period-doubling route to chaos in the single mode. An example for the complicated
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Figure 10.12 As shown in Figure 10.8 except for 	ω = −0.5 GHz.
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Figure 10.13 As shown in Figure 10.8 except for 	ω = 0.5 GHz.

single-mode dynamics in this regime is shown in Figure 10.13. The higher order
bifurcations inside the period-doubling bubble around slightly positive detuning in
Figure 10.6 are not resolved. However, we observe that within the chaotic regime, a
transition from single-mode to two-mode dynamics occurs. An example for chaotic
two-mode behavior is shown in Figure 10.14.

With further increase of 	ω, we then leave the period-doubling bubble via an
inverse period-doubling bifurcation (PD) and are left with a two-mode limit cycle as
shown in Figure 10.15. As before, this limit cycle undergoes a torus bifurcation that
introduces a low frequency in the power spectrum. The time trace after the torus
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Figure 10.14 As shown in Figure 10.8 except for 	ω = 2.0 GHz.
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Figure 10.15 As shown in Figure 10.8 except for 	ω = 2.7 GHz.

bifurcation is shown in Figure 10.16. Further increase in the detuning frequency
leads us back to a single-mode limit cycle as shown in Figure 10.17 via a single-mode
saddle-node of limit cycle (SNL) bifurcation. As before, this scenario gives rise to
the characteristic starlike features in the power spectrum of Figure 10.7.

Increasing 	ω further leads into a new bubble bounded by period-doubling
bifurcation lines around 	ω ≈ 6.2GHz. In contrast to the previous period-doubling
bubble, there is now, however, no chaotic dynamics evident along the path at which
we transverse the bubble. Instead the transition from a single-mode (Figure 10.18)
to a two-mode (Figure 10.19) period two limit cycle is mediated via a transcritical
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Figure 10.16 As shown in Figure 10.8 except for 	ω = 3.5 GHz.
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Figure 10.17 As shown in Figure 10.8 except for 	ω = 5 GHz.

bifurcation of limit cycles (TC). With further increase in 	ω, we briefly cut through
a torus region (Figure 10.20) with a particular low additional frequency. A further
inverse PD bifurcation finally leads to a simple two-mode limit cycle corresponding
to a two-mode wave mixing state shown in Figure 10.21.

From the power spectrum shown in Figure 10.7 and the time traces shown in
Figures 10.8–10.21, we conclude that although we have varied only one parameter
(	ω), we have observed a large number of different bifurcation scenarios. It has
been shown in [27] that these scenarios can be confirmed experimentally with high
accuracy.
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Figure 10.18 As shown in Figure 10.8 except for 	ω = 6.6 GHz.
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Figure 10.19 As shown in Figure 10.8 except for 	ω = 8 GHz.

10.5
Conclusions

In summary, we have reviewed the design principles for Fabry–Perot laser with
arbitrarily modified mode spectrum and we have examined basic dynamical features
of the injected two-mode laser, which is theoretically and experimentally fairly well
understood.

We have argued that it may be possible to design complex optical networks from
an array of multimode lasers by selecting the lasing modes differently at each laser.
These sophisticated optical connection topologies are, in particular, interesting in
connection with all-optical signal processing but would also provide a test bed for
complex network theory itself.
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Figure 10.20 As shown in Figure 10.8 except for 	ω = 9.8 GHz.
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16. Erzgräber, H., Krauskopf, B., and
Lenstra, D. (2006) Compound laser
modes of mutually delay-coupled lasers.
SIAM J. Appl. Dyn. Syst., 5, 30.
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11
Noise Synchronization and Stochastic Bifurcations in Lasers
Sebastian M. Wieczorek

11.1
Introduction

Synchronization of nonlinear oscillators to irregular external signals is an interest-
ing problem of importance in physics, biology, applied science, and engineering
[1–10]. The key difference to synchronization to a periodic external signal is the lack
of a simple functional relationship between the input signal and the synchronized
output signal, making the phenomenon much less evident [1, 11]. Rather, synchro-
nization is detected when two or more identical uncoupled oscillators driven by the
same external signal, but starting at different initial states have identical long-term
responses. This is equivalent to obtaining reproducible long-term response from a
single oscillator driven repeatedly by the same external signal, each time starting
at a different initial state. Hence, synchronization to irregular external signals is
also known as reliability [3] or consistency [7], and represents the ability to encode
irregular signals in a reproducible manner.

Recent studies have shown that nonlinear oscillators can exhibit interesting
responses to stochastic external signals. Typically, a small amount of external noise
causes synchronization [[1], Chapter 7], [2, 4]. However, as the strength of external
noise increases, there can be a loss of synchrony in oscillators with amplitude–phase
coupling (also known as shear, nonisochronicity, or amplitude-dependent frequency)
[[1], Chapter 7], [8–10, 12–14]. Mathematically, loss of noise synchrony, consistency,
or reliability is a manifestation of a stochastic bifurcation of a random attractor.

This chapter gives a definition of noise synchronization in terms of random
pullback attractors and studies synchronization–desynchronization transitions as
purely noise-induced stochastic bifurcations. This is in contrast to the effects
described in Chapter 2, where noise is used to control or regulate the dynam-
ics that is already present in the noise-free system. We focus on a single-mode
class-B laser model and the Landau–Stuart model (Hopf normal form with shear
[1]). In Section 11.6, numerical analysis of the locus of the stochastic bifurcation
in a three-dimensional parameter space of the ‘‘distance’’ from Hopf bifurcation,
amount of amplitude–phase coupling, and external signal strength reveals a simple
power law for the Landau–Stuart model, but quite different behavior for the laser

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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model. In Section 11.7, the analysis of the shear-induced stretch-and-fold action that
creates horseshoes gives an intuitive explanation for the observed loss of synchrony,
and for the deviation from the simple power law in the laser model. Experimentally,
stochastic external forcing can be realized by optically injecting noisy light into a
(semiconductor) laser as described in Section 11.4. While bifurcations of random
pullback attractors and the associated synchronization–desynchronization transi-
tions have been studied theoretically, single-mode semiconductor lasers emerge as
interesting candidates for the experimental testing of these phenomena.

11.2
Class-B Laser Model and Landau–Stuart Model

A class-B single-mode laser [15] without noise can be modeled by the rate equations
[16]:

dE

dt
= i� E + gγ (1 − iα)NE, (11.1)

dN

dt
= J − N − (1 + gN)|E|2, (11.2)

which define a three-dimensional dynamical system with a normalized electric-field
amplitude, E ∈ C, and normalized deviation from the threshold population inver-
sion, N ∈ R, such that N = −1 corresponds to zero population inversion. Parameter
J is the normalized deviation from the threshold pump rate such that J = −1 cor-
responds to zero pump rate. The linewidth enhancement factor, α, quantifies the
amount of amplitude–phase coupling, � is the normalized detuning (difference)
between some conveniently chosen reference frequency and the natural laser fre-
quency, γ = 500 is the normalized decay rate, and g = 2.765 is the normalized
gain coefficient [16].

System (Eqs. (11.1) and (11.2)) is S
1-equivariant, meaning that it has rotational

symmetry corresponding to a phase shift E → Eeiφ , where 0 < φ ≤ 2π . For J ∈ R,
there is an equilibrium at (E, N) = (0, J), which represents the ‘‘off’’ state of the
laser. This equilibrium is globally stable if J < 0 and unstable if J > 0. At J = 0,
there is a Hopf (� �= 0) or pitchfork (� = 0) bifurcation defining the laser threshold.
Moreover, if J > 0, the system has a stable group orbit in the form of periodic orbit
for � �= 0 or a circle of infinitely many nonhyperbolic (neutrally stable) equilibria
for � = 0. In this chapter, we refer to this circular attractor as the limit cycle.
The limit cycle is given by (|E|2, N) = (J, 0) and represents the ‘‘on’’ state of the
laser. Owing to the S

1-symmetry, the Floquet exponents of the limit cycle can be
calculated analytically as eigenvalues of one of the nonhyperbolic equilibria for
� = 0. Specifically, if

0 < J <
4γ

(
1 − √

1 − 1/(2γ )
) − 1

g
≈ 9 × 10−5,

the overdamped limit cycle has three real Floquet exponents

μ1 = 0, μ2,3 = −a ± b, (11.3)
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and if

4γ
(
1 − √

1 − 1/(2γ )
) − 1

g
< J <

4γ
(
1 + √

1 − 1/(2γ )
) − 1

g
≈ 1446,

the underdamped limit cycle has one real and two complex-conjugate Floquet
exponents

μ1 = 0, μ2,3 = −a ± ib, (11.4)

where

a = 1

2

(
1 + gJ

)
> 0 and b =

√
|a2 − 2gγ J|> 0.

In the laser literature, the decaying oscillations found for pump rate in the
realistic range J ∈ (9 × 10−5, 20) are called relaxation oscillations. (This should not
be confused with a different phenomenon of self-sustained, slow–fast oscillations.)
Finally, even though the laser model (Eqs. (11.1) and (11.2)) is three dimensional, it
cannot admit chaotic solutions because of the restrictions imposed by the rotational
symmetry.

Using center manifold theory [17], the dynamics of Eqs. (11.1) and (11.2) near
the Hopf bifurcation can be approximated by the two-dimensional invariant center
manifold

Wc = {(E, N) ∈ R
3 : N = J − |E|2},

on which Eqs. (11.1) and (11.2) reduce to

1
gγ

dE

dt
=

[
J + i

(
�

gγ
− α(J − |E|2)

)]
E − E|E|2.

After rescaling time and detuning,

t̃ = tgγ and �̃ = �/(gγ ),

we obtain the Landau–Stuart model

dE

dt̃
=

[
J + i

(
�̃ − α(J − |E|2)

)]
E − E|E|2, (11.5)

which is identical to the Hopf normal form [17] except for the higher-order term,
iα(J − |E|2)E, representing amplitude–phase coupling. Since this term does not
affect stability properties of Eq. (11.5), it does not appear in the Hopf normal
form. However, in the presence of an external forcing, fext(t), this term has to be
included because it gives rise to qualitatively different dynamics for different values
of α. If J > 0, the Landau–Stuart model has a stable limit cycle with two Floquet
exponents

μ1 = 0 and μ2 = −2J. (11.6)
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11.3
The Linewidth Enhancement Factor and Shear

The linewidth enhancement factor, α, quantifying the amount of amplitude–phase
coupling for the complex-valued electric field, E, is absolutely crucial to our analysis.
Its physical origin is the dependence of the semiconductor refractive index, and
hence the laser-cavity resonant frequency, on the population inversion [15, 18]. A
change in the electric-field intensity, δ|E|2, induces a change, δN, in population
inversion (Eq. (11.2)). The resulting change in the refractive index shifts the cavity
resonant frequency. The ultimate result is a change of −αgγ δN in the instantaneous
frequency of the electric field defined as d(arg(E))/dt.

Mathematically, amplitude–phase coupling is best illustrated by an invariant set
associated with each point, q, on the limit cycle. For a point q(0) on a stable limit
cycle in a n-dimensional system, this set is defined as

{x(0) ∈ R
n : x(t) → q(t) as t → ∞}, (11.7)

and is called an isochrone [19]. In the laser model (Eqs. (11.1) and (11.2)) and
Landau–Stuart model (Eq. (11.5)), isochrones are logarithmic spirals that satisfy

arg(E) + α ln |E| = C, where C ∈ (0, 2π ]. (11.8)

To see this, define a phase

� = arg(E) + α ln |E|, (11.9)

and check that d�/dt is constant and equal to � for Eqs. (11.1) and (11.2) and �̃ for
Eq. (11.5). This means that trajectories for different initial conditions with identical
initial phase, �(0), will retain identical phase, �(t), for all time t. Since the limit
cycle is stable, all such trajectories will converge to the limit cycle, where they have
the same |E(t)|. Then, Eq. (11.9) implicates that all such trajectories have the same
arg(E(t)) and hence converge to just one special trajectory along the limit cycle as
required by Eq. (11.7).
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Figure 11.1 (Black) The limit cycle representing the ‘‘on”
state of the laser for J = 1 and (gray) isochrones for three
different points on the limit cycle as defined by Eq. (11.7)
for (a) α = 0 and (b) α = 2.
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Isochrones of three different points on the laser limit cycle are shown in
Figure 11.1. Isochrone inclination to the direction normal to the limit cycle at q(0)
indicates the strength of phase space stretching along the limit cycle. If α = 0,
trajectories with different |E|> 0 rotate around the origin of the E-plane with the
same angular frequency giving no isochrone inclination and hence no phase-space
stretching (Figure 11.1a). However, if |α| > 0, trajectories with larger |E| rotate
with higher angular frequency giving rise to isochrone inclination and phase-space
stretching (Figure 11.1b). Henceforth, we refer to amplitude–phase coupling as
shear.

11.4
Detection of Noise Synchronization

There are at least two approaches to detecting synchronization of a semiconductor
laser to an irregular external signal. One approach involves a comparison of the
responses of two or more identical and uncoupled lasers that are driven by the
same external signal. The other approach involves a comparison of the responses
of a single laser driven repeatedly by the same external signal [7]. Here, we consider
responses of M uncoupled lasers with intrinsic spontaneous emission noise that
are subjected to common optical external forcing, fext(t), [16, 20]:

dEj

dt
= i� Ej + gγ (1 − iα)NjEj + fEj(t) + fext(t), (11.10)

dNj

dt
= J − Nj − (1 + gNj)|Ej|2 + fNj(t), (11.11)

j = 1, 2, . . . , M.

The lasers are identical except for the intrinsic spontaneous emission noise that is
represented by random Gaussian processes

fEj(t) = f R
Ej (t) + if I

Ej(t) and fNj(t),

that have zero mean and are delta correlated

〈 fEj(t)〉 = 〈 fNj(t)〉 = 0,

〈 f R
Ej (t)f

I
Ej(t)〉 = 0,

〈 f R
Ei (t)f

R
Ej (t

′)〉 = 〈 f I
Ei(t)f

I
Ej(t

′)〉 = DEδijδ(t − t′), (11.12)

〈 fNi(t)fNj(t′)〉 = 2DNδijδ(t − t′).

Here, δij is the Kronecker delta and δ(t − t′) is the Dirac delta function. In the
calculations, we use DE = 0.05 and DN = 3.5 × 10−8 [16].

To measure the quality of synchronization, we introduce the order parameter,
IM(t), and the average order parameter, 〈IM〉, as

〈IM〉 = lim
T→∞

1

T

∫ T

0
IM(t) dt = lim

T→∞
1

T

∫ T

0

∣∣∣∣∣∣
M∑

j=1

Ej(t)

∣∣∣∣∣∣
2

dt. (11.13)
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Figure 11.2 An experimental setup for detecting noise synchronization in lasers.

The physical meaning of IM(t) and 〈IM〉 is illustrated in Figure 11.2. If M identical
lasers are placed at an equal distance from a small (the order of a wavelength) spot
and their light is focused onto this spot, then IM(t) and 〈IM〉 are the instantaneous
and average light intensity at the spot, respectively. A single laser oscillates with
a random phase owing to spontaneous emission noise so that, for independent
lasers, 〈IM〉 is proportional to M times the average intensity of a single laser. This
follows directly from Eq. (11.13) assuming lasers with identical amplitudes, |Ej(t)|,
and uncorrelated random phases, arg(Ej(t)). However, when the lasers oscillate in
phase, one expects 〈IM〉 to be equal M2 times the average intensity of a single laser.
This follows directly from Eq. (11.13) assuming lasers with identical amplitudes
and phases. We speak about synchronization when 〈IM〉 ≈ M2, different degrees
of partial synchronization when M < 〈IM〉 < M2, and lack of synchronization
when 〈IM〉 ≈ M. Note that 〈IM〉 > M2 indicates trivial synchronization, where the
external forcing term, fext(t) becomes ‘‘larger’’ than the oscillator terms on the
right-hand side of Eq. (11.10). For comparability reasons, we now briefly review
the case of a monochromatic forcing and then move on to the case of stochastic
forcing.

Let us consider a monochromatic external forcing

fext(t) = Keiνext t

where K ∈ R is the forcing strength and νext is the detuning (difference) between
the reference frequency chosen for � in Eq. (11.1) and the forcing frequency. Such
an external forcing breaks the S

1-symmetry and can force each laser to fluctuate in
the vicinity of the well-defined external forcing phase, νextt, as opposed to a random
walk. This phenomenon was studied in [21] as a thermodynamic phase transition.
Figure 11.3a shows 〈IM〉 versus K, for an external forcing resonant with the laser,

νext = �.

Because of the intrinsic spontaneous emission noise, the forcing amplitude has
to reach a certain threshold before synchronization occurs. For α = 0, a sharp
onset of synchronization at K ≈ 10−3 is followed by a wide range of K with
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Figure 11.3 The average order parameter as defined by
Eq. (11.13) for M = 50 uncoupled lasers with common (a)
monochromatic and (b) white noise external forcing versus
the forcing strength for (dashed) α = 0 and (solid) α = 3;
J = 5 and νext = � in panel (a). (Adapted from [12] with per-
mission.)

synchronous behavior, where 〈IM〉 = M2〈Ifr〉. Here, 〈Ifr〉 is the average intensity
of a single laser without forcing. At around K = 102, 〈IM〉 starts increasing above
M2〈Ifr〉. While lasers still remain synchronized, this increase indicates that the
external forcing is no longer ‘‘weak.’’ Rather, it becomes strong enough to cause
an increase in the average intensity of each individual laser. A very different
scenario is observed for α = 3. There, the onset of synchronization is followed by
an almost complete loss of synchrony just before 〈IM〉 increases above M2〈Ifr〉.
The loss of synchrony is caused by externally induced bifurcations and ensuing
chaotic dynamics. These bifurcations have been studied in detail, both theoretically
[15, 22–24] and experimentally [25], and are well understood.

The focus of this work is synchronization to white noise external forcing represented
by the complex random process, that is, Gaussian, has zero mean, and is delta
correlated

fext(t) = f R
ext(t) + if I

ext(t),

〈 fext(t)〉 = 〈 f R
ext(t)f

I
ext(t)〉 = 0, (11.14)

〈 f R
ext(t)f

R
ext(t

′)〉 = 〈 f I
ext(t)f

I
ext(t

′)〉 = Dextδ(t − t′).

White noise synchronization is demonstrated in Figure 11.3b, where we plot
〈IM〉 versus Dext. For α = 0, a clear onset of synchronization at around Dext =
10−3 is followed by synchronous behavior at larger Dext. In particular, there
exists a range of Dext where white noise external forcing is strong enough to
synchronize phases of intrinsically noisy lasers, but weak enough so that each
individual laser has small intensity fluctuations and its average intensity remains
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unchanged. In the probability distributions for IM(t) in Figure 11.4a and b, the
distinct peak at IM(t) ≈ M2〈Ifr〉 and a noticeable tail at smaller IM(t) indicate
synchronization that is not perfect. Rather, synchronous behavior is occasionally
interrupted with short intervals of asynchronous behavior owing to different
intrinsic noise within each laser. For Dext > 102 the external forcing is no longer
‘‘weak’’ and causes an increase in the intensity fluctuations and the average
intensity of each individual laser. Although the lasers remain in synchrony, 〈IM〉
increases above M2〈Ifr〉 (Figure 11.3b) and exhibits large fluctuations (Figure 11.4c)
as in the asynchronous case. A very different scenario is observed again for α = 3.
There, the onset of synchronization is followed by a significant loss of synchrony for
Dext ∈ (2, 200). In this range of the forcing strength, one finds qualitatively different
dynamics for α = 0 and α = 3 as revealed by different probability distributions in
Figure 11.4b.

Interestingly, comparison between (a) and (b) in Figure 11.3 shows that some
general aspects of synchronization to a monochromatic and white noise external
forcing are strikingly similar. In both cases, there is a clear onset of synchronization
followed by a significant loss of synchrony for sufficiently large α, and subsequent
revival of synchronization for stronger external forcing. However, the dynamical
mechanism responsible for the loss of synchrony in the case of white noise external
forcing has not been fully explored.

11.5
Definition of Noise Synchronization

The previous section motivates further research to reveal the dynamical mecha-
nism responsible for the loss of synchrony observed in Figure 11.3b. To facilitate
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the analysis, we define synchronization to irregular external forcing within the
framework of random dynamical systems. Let us consider a n-dimensional, non-
linear, dissipative, autonomous dynamical system, referred to as unforced system

dx

dt
= f (x, p) (11.15)

where x ∈ R
n is the state vector and p ∈ R

k is the parameter vector that does not
change in time. An external forcing is denoted with fext(t), and the corresponding
nonautonomous forced system reads

dx

dt
= f (x, p) + fext(t). (11.16)

Let x(t, t0, x0) denote a trajectory or solution of Eq. (11.16) that passes through x0 at
some initial time t0. In situations where explicitly displaying the initial condition
is not important, we denote the trajectory simply as x(t). For an infinitesimal
displacement δx(0) from x(0, t0, x0), the largest Lyapunov exponent along x(t, t0, x0)
is given by

λmax = lim
t→∞

1

t
ln

|δx(t)|
|δx(0)| . (11.17)

If the external forcing, fext(t), is stochastic, Eq. (11.16) defines a random dynamical
system where λmax does not depend on the noise realization, fext [26]. Furthermore,
we define

Definition 1. An (self-sustained) oscillator is an unforced system (Eq. (11.15)) with a
stable hyperbolic limit cycle.

Definition 2. An attractor for the forced system (Eq. (11.16)) with stochastic forcing
fext(t) is called a random sink (rs) if λmax < 0, and a random strange attractor (rsa) if
λmax > 0.

Definition 3. A stochastic d-bifurcation is a qualitative change in the random attractor
when λmax crosses through zero [[26], Chapter 9].

Definition 4. An oscillator is synchronized to stochastic forcing fext(t) on a bounded
subset D ⊂ R

n if the corresponding forced system (Eq. (11.16)) has a random sink in the
form of a unique attracting trajectory, a(t, fext), such that

lim
t0→−∞ |x(t, t0, x0) − a(t, fext)| → 0,

for fixed t > t0 and all x0 ∈ D.

By Definition 1, an unforced oscillator has zero λmax on an open set of parame-
ters. In the presence of stochastic external forcing, λmax becomes either positive or
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negative for typical parameter values [10, 26] and remains zero only at some special
parameter values defining stochastic d-bifurcations. Synchronization in Definition
4 is closely related to and implies generalized synchronization [11, 27] or weak
synchronization [28] – a phenomenon that requires a time-independent functional
relationship between the measured properties of the forcing and the oscillator [29].
Following [26, Chapter 9] and [30], we used in Definition 4 the notion of pullback
convergence where the asymptotic behavior is studied for t0 → −∞ and fixed t. (For
a study of different notions of convergence in random dynamical systems, we refer
the reader to [31].) While λmax does not depend on the noise realization, fext, random
sinks and random strange attractors do depend on fext. Hence the fext dependence in
a(t, fext) in Definition 4. Since λmax < 0 does not imply a unique attracting trajectory,
it is not sufficient to show synchronization as defined in Definition 4. In general,
there can be a number of coexisting (locally) attracting trajectories that belong to a
global pullback attractor [30]. In such cases, one can choose D to lie in the basin of at-
traction of one of the locally attracting trajectory and speak of synchronization on D.

11.6
Synchronization Transitions via Stochastic d-Bifurcation

To facilitate the analysis we make use of Definitions 1–3 and, henceforth, consider
noise synchronization in the laser model with white noise external forcing

dE

dt
= i� E + gγ (1 − iα)NE + fext(t), (11.18)

dN

dt
= J − N − (1 + gN)|E|2, (11.19)

but without the intrinsic spontaneous emission noise. Now, owing to the absence of
intrinsic noise, Definition 4 is equivalent to the synchronization detection scheme
chosen in Section 11.4. More specifically, the evolution of M trajectories starting
at different initial conditions for a single laser with external forcing is the same
as the evolution of an ensemble of M identical uncoupled lasers with the same
forcing, where each laser starts at a different initial condition. A random sink for
Eqs. (11.18) and (11.19) in the form of a unique attracting trajectory, a(t, fext), makes
trajectories for different initial conditions converge to each other. In an ensemble of
M identical uncoupled lasers with common forcing, this means that 〈IM〉 → M2〈Ifr〉
in time so that synchronization is detected. A random strange attractor for Eqs.
(11.18) and (11.19), where nearby trajectories separate exponentially fast because
λmax > 0, implies 〈IM〉 < M2〈Ifr〉 so that incomplete synchronization or lack of
synchronization is detected.

Figure 11.5 shows effects of white noise external forcing on the sign of the
otherwise zero λmax in an unforced laser. For α = 0, external forcing always shifts
λmax to negative values meaning that the system has a random sink for Dext > 0 and
J > 0 (Figure 11.5a). Additionally, this random sink is a unique trajectory, a(t, fext),
meaning that the laser is synchronized to white noise external forcing. However, for
α = 3, there are two curves of stochastic d-bifurcation where λmax crosses through
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28; and (c,f) 0.

zero (Figure 11.5b). Noise synchronization is lost for parameter settings between
these two curves, where λmax > 0 indicates a random strange attractor. Pullback
convergence to two qualitatively different random attractors found for α = 3 is
shown in Figure 11.6. At fixed time t = 30, we take snapshots of 10 000 trajectories
for a grid of initial conditions with different initial times t0. In Figure 11.6a–c,
trajectories converge in the pullback sense to a random sink. The random sink
appears in the snapshots as a single dot whose position is different for different t
or different noise realizations fext. In Figure 11.6d–f, trajectories converge in the
pullback sense to a random strange attractor that appears in the snapshots as a
fractallike structure. This structure remains fractallike, but is different for different
t or different noise realizations fext.

11.6.1
Class-B Laser Model Versus Landau–Stuart Equations

The stochastic d-bifurcation uncovered in the previous section has been reported
in biological systems [8–10, 13, 14], and should appear in a general class of
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oscillators with stochastic forcing. Here, we use the laser model in conjunction
with the Landau–Stuart model to address its dependence on the three parameters:
Dext, J, and α, and to uncover its universal properties. With an exception of certain
approximations [10], this problem is beyond the reach of analytical techniques and
so numerical analysis is the tool of choice.

To help identifying effects characteristic to the more complicated laser model,
we first consider the Landau–Stuart model with white noise external forcing

dE

dt̃
=

[
J + i

(
�̃ − α(J − |E|2)

)]
E − E|E|2 + fext(t̃), (11.20)

where, for the rescaled time t̃, the external forcing correlations become

〈 f R
ext(t̃)f

R
ext(t̃

′)〉 = 〈 f I
ext(t̃)f

I
ext(t̃

′)〉 = Dext

gγ
δ(t̃ − t̃′).

Figure 11.7a and b shows the dependence of the d-bifurcation on J, Dext, and α in Eq.
(11.20). In the three-dimensional (J, Dext, α) parameter space, the two-dimensional
surface of d-bifurcation appears to originate from the half line (Dext = 0, J =
0, α > 5.3) of the deterministic Hopf bifurcation, has a ridge at αmin ≈ 5.3, and is
asymptotic to α ≈ 9 with increasing Dext (Figure 11.7b). Furthermore, numerical
results in Figure 11.7b suggest that the shape of the d-bifurcation curve in the
two-dimensional section (Dext, α) is independent of J. As a consequence, for fixed α

within the range α ∈ (5.3, 9), one finds two d-bifurcation curves in the (Dext, J)-plane
(Figure 11.7a) that are parametrized by

Jj = Cj(α)
√

2Dext , where j = 1, 2, (11.21)

and bound the region with a random strange attractor. Since C1(αmin) = C2(αmin) =
1, these two curves merge into a single curve

J =
√

2Dext, (11.22)

when α = αmin. On the one hand, for α ≤ αmin, the region with a random strange
attractor disappears from the (Dext, J)-plane. On the other hand, for α > 9, there
is just one d-bifurcation curve in the (Dext, J)-plane, meaning that the region
with a random strange attractor becomes unbounded toward increasing Dext

(Figure 11.7b).
Similar results are expected for any white noise forced oscillator with shear that

is near a Hopf bifurcation, and for ‘‘weak’’ forcing. This claim is supported with
numerical analysis of the laser model (Eqs. (11.18) and (11.19)) in Figure 11.7c
and d. For a fixed α, Eq. (11.20) and Eqs. (11.18)–(11.19) give identical results
if the forcing is weak enough, but significant discrepancies arise with increasing
forcing strength. First of all, it is possible to have one-dimensional sections of
the (Dext, J)-plane for fixed J with multiple uplifts of λmax to positive values (black
dots for J < 10−6 in Figure 11.7c). Secondly, the parameter region with a random
strange attractor for Eqs. (11.18) and (11.19) expands toward much lower values
of α >αmin ≈ 1 (Figure 11.7d). Thirdly, the shape of the two-dimensional surface
of d-bifurcation in the laser model becomes dependent on J and has a minimum
rather than a ridge. As a consequence, although the stochastic d-bifurcation seems
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To facilitate the comparison between Eqs.
(11.20) and (11.18)–(11.19), we plotted
results for Eqs. (11.18) and (11.19) with
the rescaled forcing strength,

√
2Dext/gγ .

(Adapted from [12] with permission.)

to originate from the half line (Dext = 0, J = 0, α > 5.3), it will appear in the
(Dext, J)-plane even for α ∈ (1, 5.3) as a closed and isolated curve away from the
origin of this plane (Figure 11.7c). Finally, the region of random strange attractor
remains bounded in the (Dext, J)-plane even for large α.

To unveil the link between the transient dynamics of unforced systems and
the forcing-induced stochastic d-bifurcation, we plot J versus Lyapunov exponents
in Figure 11.8; note that Lyapunov exponents, λi, and Floquet exponents, μi, are
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nonzero Lyapunov exponent, μ2, for the limit cycle in the
Landau–Stuart model (Eq. (11.5)). (Adapted from [12] with
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related by λi = Re[μi]. A comparison between Figures 11.7 and 11.8 shows strong
correlation between the relaxation toward the limit cycle and the d-bifurcation. In
the Landau–Stuart model (Eq. (11.5)), the linear relation (Eq. (11.6)) between J
and the nonzero Lyapunov exponent, μ2 (dashed line in Figure 11.8), results in a
linear parametrization (Eq. (11.21)) of d-bifurcation curves in the (J,

√
2Dext)-plane

(Figure 11.7a). In the laser model (Eqs. (11.1) and (11.2)), the nonlinear relation
(Eqs. (11.3) and (11.4)) between J and the nonzero Lyapunov exponents, Re(μ2)
and Re(μ3) (solid curves in Figure 11.8), results in a very similar nonlinear
parametrization of d-bifurcation curves in the (J,

√
2Dext)-plane (Figure 11.7c). The

splitting up of the chaotic region bounded by the black dots for J < 9 × 105 in
Figure 11.7c is related to two different eigendirections normal to the limit cycle
with significantly different timescales of transient dynamics toward the limit cycle
(the two corresponding Lyapunov exponents are shown in solid in Figure 11.8).
Finally, the appearance of relaxation oscillations in the laser system is associated
with a noticeable expansion of the chaotic region, in particular, toward smaller α.

11.7
Noise-Induced Strange Attractors

Complicated invariant sets, such as strange attractors, require a balanced interplay
between phase-space expansion and contraction [17]. If phase-space expansion in



286 11 Noise Synchronization and Stochastic Bifurcations in Lasers

certain directions is properly compensated by phase-space contraction in some
other directions, nearby trajectories can separate exponentially fast (λmax > 0) and
yet remain within a bounded subset of the phase space.

It has been recently proven that, when suitably perturbed, any stable hyperbolic
limit cycle can be turned into ‘‘observable’’ chaos (a strange attractor) [32]. This
result is derived for periodic discrete-time perturbations (kicks) that deform the
stable limit cycle of the unkicked system. The key concept is the creation of
horseshoes via a stretch-and-fold action due to an interplay between the kicks and
the local geometry of the phase space. Depending on the degree of shear, quite
different kicks are required to create a stretch-and-fold action and horseshoes.
Intuitively, it can be described as follows. In systems without shear, where points
in phase-space rotate with the same angular frequency about the origin of the
complex E-plane independent of their distance from the origin, the kick alone
has to create the stretch-and-fold action. This is demonstrated in Figure 11.9.
Horseshoes are formed as the system is suitably kicked in both radial and angular
directions and then relaxes back to the attractor (the circle in Figure 11.9a) of the
unkicked system. Repeating this process reveals chaotic invariant sets. However,
showing rigorously that a specific kick results in ‘‘observable’’ chaos is a nontrivial

(b)(a) (c)

(d) (e) (f)

Figure 11.9 Time evolution of sets of initial
conditions showing the creation of horse-
shoes in the phase space of a suitably kicked
laser model with no shear (α = 0). The sets
of initial conditions are (a) the stable circle

and (d) boxes containing parts of the cir-
cle. Shown are phase portraits (a,d) before,
(b,e) immediately after the first kick, and
(c,f) some time after the first kick.
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task [32]. In the presence of shear, where points in phase space rotate with different
angular frequencies depending on their distance from the origin, the kick does
not have to be so specific or carefully chosen. In fact, it may be sufficient to kick
nonuniformly in the radial direction alone, and rely on natural forces of shear to
provide the necessary stretch-and-fold action.

These effects are illustrated in Figure 11.10 for the single laser model
(Eqs. (11.1)–(11.2)) with nonuniform kicks in the radial direction alone for α = 0
(no shear) and α = 2 (shear). There, we set � = 0 and refer to the stable limit cycle
(dashed circle in Figure 11.10a) as �. Kicks modify the electric-field amplitude,
|E|, by a factor of 0.8 sin[4 arg(E)] at times t = 0, 0.25, 0.5, and 0.75, but leave
the phase, arg(E), unchanged. For α = 0 each point on the black curve spirals
onto � in time, but remains within the same isochrone defined by a constant
electric-field phase, arg(E) = arg(E(0)). Hence, the black curve does not have any
folds at any time. However, for α = 2, a kick moves most points on the black curve
to different isochrones so that points with larger amplitudes |E| rotate with larger
angular frequencies. This gives rise to an intricate stretch-and-fold action. Folds
and horseshoes can be formed under the evolution of the flow even though the
kicks are in the radial direction alone.

In the laser model, stretch-and-fold action is significantly enhanced by the
spiraling transient motion about �. For J > 10−1, the laser model (Eqs. (11.1) and
(11.2)) and the Landau–Stuart model (Eq. (11.5)) have nearly identical relaxation
timescales toward � (Figure 11.8). However, owing to one additional degree of
freedom and oscillatory relaxation (Eq. (11.4)), the instantaneous stretching along
� in the three-dimensional laser vector field (Eqs. (11.1) and (11.2)) can be much
stronger compared to the planar vector field (Eq. (11.5)), especially at short times
after the perturbation. This effect is illustrated in Figure 11.11 by the time evolution
of the phase difference, arg(E1(t)) − arg(E2(t)), between two trajectories, 1 and 2,
starting at different isochrones for α = 3. Since both vector fields have identically
shaped isochrones (Eq. (11.8)), the phase difference converges to the same value
as time tends to infinity. However, at small t, the oscillatory phase difference for
Eqs. (11.1) and (11.2) can exceed significantly the monotonically increasing phase
difference for Eq. (11.5) (compare solid and dotted curves in Figure 11.11).

It is important to note that the rigorous results for turning stable limit cycles into
chaotic attractors are derived for periodic discrete-time perturbations. Stochastic
forcing is a continuous-time perturbation, meaning that the analysis in [32] cannot
be directly applied to our problem. Nonetheless, such analysis gives a valuable
insight as to why random chaotic attractors appear for α sufficiently large, and it
helps to distinguish the effects of stochastic forcing.

Here, we demonstrated that purely additive white noise forcing is sufficient to
induce random strange attractors in limit cycle oscillators. Furthermore, numerical
analysis in Section 11.6.1 shows that, in the case of stochastic forcing, creation
of strange attractors requires a different balance between the amount of shear,
relaxation rate toward the limit cycle, and forcing strength, as compared to
periodic forcing. Unlike in the case of discrete-time periodic forcing, the shear
has to be strong enough, |α| > C > 0, to allow sufficient stretch-and-fold action.
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Figure 11.10 Snapshots at times (a) t = 0,
(b) t = 0.35, (c) t = 0.8, and (d) t = 1 show-
ing the time evolution of 15 000 trajectories
with initial conditions distributed equally
over the stable circle for Eqs. (11.1) and

(11.2). Kicks in the radial direction alone are
applied at times t = 0, 0.25, 0.5, 0.75. A com-
parison between α = 0 and α = 2 illustrates
the α-induced stretch-and-fold action in the
laser phase space.
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Figure 11.11 Phase-space stretching along
the limit cycle shown as time evolution of
the phase difference between two trajectories
starting at different isochrones. The three
curves are obtained using (dashed) Eqs.

(11.1) and (11.2) with α = 0, (solid) Eqs.
(11.1) and (11.2) with α = 3, and (dotted)
Eq. (11.5) with α = 3. (Adapted from [12]
with permission.)

Provided that the shear is strong enough, the stochastic forcing strength needs
to be at least comparable to the relaxation rate toward the limit cycle to allow
formation of random strange attractors. Furthermore, we demonstrated that in
higher dimensional systems, different eigendirections with distinctly different
relaxation rates toward the limit cycle could give rise to more than one region in the
(J,

√
2Dext)-plane with a random strange attractor. Last but not least, we revealed

that the enhancement in the instantaneous stretch-and-fold action arising from
laser relaxation oscillations results in a larger parameter region with a random
strange attractor.

11.8
Conclusions

We used the class-B laser model in conjunction with the Landau–Stuart model
(Hopf normal form with shear) to study noise synchronization and loss of synchrony
via shear-induced stochastic d-bifurcations.

We defined noise synchronization in terms of pullback convergence of random
attractors and showed that a nonlinear oscillator can synchronize to stochastic
external forcing. However, the parameter region with synchronous dynamics
becomes interrupted with a single or multiple intervals of asynchronous dynamics if
amplitude–phase coupling or shear is sufficiently large. Stability analysis shows that
the synchronous solution represented by a random sink loses stability via stochastic
d-bifurcation to a random strange attractor. We performed a systematic study of
this bifurcation with dependence on the three parameters: the Hopf bifurcation
parameter (laser pump), the amount of shear (laser linewidth enhancement factor),
and the stochastic forcing strength.

In this way, we uncovered a vast parameter region with random strange at-
tractors that are induced purely by stochastic forcing. More specifically, in the
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three-dimensional parameter space, the two-dimensional surface of the stochastic
bifurcation originates from the half line of the deterministic Hopf bifurcation. In
the plane of stochastic forcing strength and Hopf bifurcation parameter, one finds
stochastic d-bifurcation curve(s) bounding region(s) of random strange attractors
if the amount of shear is sufficiently large. The shape of d-bifurcation curves
is determined by the type and rate of the relaxation toward the limit cycle in
the unforced oscillator. Near the Hopf bifurcation and provided that stochastic
forcing is weak enough, the d-bifurcation curves satisfy the numerically uncovered
power law (Eq. (11.21)). However, as the stochastic forcing strength increases,
there might be deviations from this law. The deviations arise because different
oscillators experience different effects of higher-order terms and additional degrees
of freedom on the relaxation toward the limit cycle. In the laser example, the
d-bifurcation curves deviate from the simple power law (Eq. (11.21)), so that the
region of a random strange attractor splits up and expands toward smaller values
of shear as the forcing strength increases. We intuitively explained these results
by demonstrating that the shear-induced stretch-and-fold action in the oscillator’s
phase space facilitates creation of horseshoes and strange attractors in response to
external forcing. Furthermore, we showed that the stretch-and-fold action can be
greatly enhanced by damped relaxation oscillations in the laser model, causing the
deviation from the simple power law.
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12
Emergence of One- and Two-Cluster States in Populations of
Globally Pulse-Coupled Oscillators
Leonhard Lücken and Serhiy Yanchuk

12.1
Introduction

Networks of coupled dynamical systems play an important role for all branches
of science [1–4]. In the neuroscience, for instance, there is a need for modeling
large populations of coupled neurons in order to approach problems connected
with the synchronization of neural cells or other types of collective behavior [4–6].
The investigation of the dynamics of coupled lasers [7–10] is important for many
purposes including secure communication [11, 12] or high-power generation. The
interacting biological, mechanical, or electrical oscillators [13, 14] belong already
to classical models for studying various aspects of collective dynamics. In neural
networks, the synchronous activity might be pathological [15], and hence, there
was recently an increasing effort to control the desynchronization of populations of
coupled oscillators. In particular, the coordinated reset stimulation technique [4, 16]
proposes to establish a cluster state in the network, in which the oscillator’s phases
split into several subgroups. This example illustrates the importance of the analysis
of cluster formation in coupled systems. This chapter investigates the connection
between the properties of a single oscillator, that is, its sensitivity to stimulations,
and the formation of clusters in a globally coupled system of such oscillators. We
show that by altering the shape of the sensitivity function, called the phase-response

function, different clusters in a network can be stabilized. More precisely, we study
a family of the phase-response curves (PRCs), which are unimodal and turn to zero
at the spiking moment. This choice is motivated by several well-known neuron
models. It appears that the position of the maximum of the unimodal sensitivity
function with respect to the spiking point plays an important role for determining
whether the system will synchronize or approach a two-cluster state (Figure 12.1).
In particular, when the maximum of the sensitivity function is located in the
second half of the period, the one-cluster (or completely synchronized) state acts as
a global attractor. In the case, when the sensitivity function reaches its maximum
in the first half of the period, various two-cluster states become stable.

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 12.1 Clusters in a population of 50 phase oscilla-
tors. Dots indicate the times when an oscillator reaches
the threshold; Panel (a) shows the firing pattern of a com-
plete in-phase synchronized population (one cluster), while
(b) shows the firings in a symmetric two cluster.

12.1.1
Pulse-Coupled Oscillators

In some coupled systems, for example, neuron populations, the time during which
the interaction effectively takes place is much smaller than the characteristic period
of oscillations. In such cases, it is reasonable to approximate the interaction by an
impact, that is, by assuming that the interaction is immediate. This approximation
leads to models of pulse-coupled oscillators, which have been widely used in the
literature. For example, Mirollo and Strogatz [17] have shown that the complete syn-
chronization (in this case, it is equivalent to the phase locking) is stable and attracts
almost all initial conditions in the network of globally coupled integrate-and-fire
(IF) oscillators of the form

dxj

dt
= S0 − γ xj, xj ∈ [0, 1), j = 1, . . . , N (12.1)

with constants S0 > γ > 0. One might refer to S0 as input current and to γ as the
dissipation constant. The following additional condition describes the interaction:
when kth oscillator reaches the threshold xk(t−) = 1, then positions of all remaining
oscillators are shifted accordingly to the rule

xj(t
+) = min{xj(t) + �, 1}, j �= k (12.2)
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with some small � > 0 and the kth oscillator resets to xk(t+) = 0. It is shown in
[17] that complete synchronization is achieved after a finite transient time. The
synchronization in a more general model of IF neurons has been shown in [18].
Tsodyks et al. have demonstrated in [19] that the phase-locked state is unstable
with respect to inhomogeneity in the local frequencies, that is, when the oscillators
become nonidentical.

A larger class of pulse-coupled models was studied in [20–22]. In particular, Goel
and Ermentrout [20] obtained sufficient conditions for the stability of a completely
synchronous solution. We introduce this class of models in Section 12.1.2.

The dynamics of pulse-coupled oscillators has been studied also for the systems
with different topologies, that is, ring topology [23], as well as for delayed interactions
[24]. Transient phenomena of randomly diluted networks have been analyzed in
[25]. Globally pulse-coupled IF oscillators with a finite pulse-width have been
considered in [26–28], where the interaction pulse is assumed to have a shape
α2t
N e−αt with the width α.

12.1.2
Phase-Response Curve as a Parameter

In this section, we introduce a general class of pulse-coupled phase oscillators
[20, 29]. The oscillator’s motion between the spikes is described by the rule

dϕj

dt
= ω (12.3)

where ϕj ∈ [0, 2π ]. When kth oscillator reaches the threshold at time t, that is,
ϕk(t−) = 2π , it emits a spike to all other oscillators of the network, which are
immediately resetted according to

ϕk(t+) = 0, ϕj(t
+) = ϕj(t

−) + �Z(ϕj(t
−)), j �= k, (12.4)

where Z(ϕ) is called PRC. Effectively, this means that there is no coupling between
two consecutive spiking events. The coupling occurs only during the spike and acts
through the resetting, since the time of the resetting of the oscillator j depends on
the phase position of the oscillator k. The size of the phase jump, that an oscillator
performs, when stimulated by an incoming spike depends on its sensitivity to
stimulation in its present state. See Figure 12.2 for an illustration.

Let us firstly show that IF oscillators (Eq. (12.1)) can be written in a form similar
to Eqs. (12.3) and (12.4) [20]. For this, we rewrite Eq. (12.1) with respect to the phase
coordinate instead of the voltage coordinate. Indeed, the coordinate xj in system
(Eq. (12.1)) is supposed to describe the voltage difference across the membrane of
a neuron [30]. The phase coordinate ϕj should behave according to Eq. (12.3) with
the frequency ω = 2π/T , where T is the period of oscillations without interaction
and can be found from Eq. (12.1)

T = − 1

γ
ln

(
1 − γ

S0

)
.
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Figure 12.2 Periodic spiking in a
Hodgkin–Huxley neuron model. Solid black
lines show the evolution of the voltage com-
ponent of the model when perturbed by a
weak pulse at t = 9 in (a) and t = 12 in
(b). The dashed black lines show the un-
perturbed oscillations. The PRC Z(ϕ(t))
of the unperturbed model is plotted solid

gray and the dashed gray line corresponds
to Z = 0. The outcome of the perturbing
pulse depends on the time t, or equiva-
lently on the phase ϕ(t), of its application.
Either the phase is delayed as in (a), that is,
Z(ϕ(t)) < 0, or it is forwarded as in (b), that
is, Z(ϕ(t)) > 0.

The corresponding transformation of variables x = f (ϕ) can be found from the
condition

dx

dt
= df

dϕ

dϕ

dt
= df

dϕ
ω = S0 − γ f (ϕ),

that is, from the initial value problem

df (ϕ)

dϕ
= T

2π
(S0 − γ f (ϕ)), f (0) = 0. (12.5)

This gives the function

f (ϕ) = S0

γ

(
1 − exp

(
−γ T

2π
ϕ

))
,

which maps the interval 0 ≤ ϕ ≤ 2π into 0 ≤ x ≤ 1. In the transformed coordinates
ϕj, the dynamics between the spikes is described by Eq. (12.3). It remains to specify
the dynamics at the threshold. Taking into account Eq. (12.2), when kth oscillator
reaches the threshold ϕk(t−) = 2π , its phase ϕk resets to ϕk(t+) = 0 and all other
oscillators have the impact

ϕj(t+) = f −1 (
xj(t+)

) = f −1 (
xj(t) + ��(�, xj(t))

)
= f −1 (

f (ϕj(t)) + ��(�, f (ϕj(t)))
)

where �(�, x) = min{1, (1 − x)/�} ≤ 1. In the case of small �, that is, the as-
sumption of weak coupling holds, the resetting rule can be approximated as



12.1 Introduction 297

ϕj(t
+) = ϕj(t) + � min{ZIF(ϕj(t)), (2π − ϕj(t))/�} (12.6)

where

ZIF(ϕ) := d(f −1)

dx
(f (ϕ)) = 2πT

S0
exp

(
Tγ

2π
ϕ

)
. (12.7)

Thus, with respect to the phase coordinates, the IF model (Eq. (12.1)) has the form
(Eq. (12.3)) and (Eq. (12.6)). In particular, the resetting rule is given by the function

ZIF,� (ϕ) = min{ZIF(ϕj(t)), (2π − ϕj(t))/�}, (12.8)

which depends on the amplitude of the perturbation �. Figure 12.3 illustrates this
function for � = 0.05. Practically, the PRC measures the sensitivity of the phase to
external perturbations.

We have shown above the specific example of pulse-coupled IF models and
their reduction to pulse-coupled phase oscillators (Eqs. (12.3) and (12.4)). In fact,
this procedure is also possible for higher-dimensional smooth systems, whenever
the oscillations correspond to a hyperbolic limit cycle, that is, in a generic case.
More details can be found in [20, 29, 31]. When the coupling is acting along one
component, for example, the voltage variable, as often assumed in the case of
neural populations, the PRC appears as a scalar function of the phase. In the case
of a higher-dimensional interaction, it should be considered more generally as a
vector.

Examples of PRCs for different neuron models are shown in Figure 12.4. Some
more numerically and experimentally obtained PRCs can be found in [20, 29, 32].
The remarkable feature of many of such PRCs is that, contrary to the IF model,
their PRCs are independent on � and admit zero values at ϕ = 0 and ϕ = 2π . The
conditions Z(0) = Z(2π ) = 0 are also reasonable from the neuroscientific point of
view, since they reflect the fact that the neurons are not sensitive to perturbations
during the spike (Figure 12.4). Generally speaking, system (Eqs. (12.3) and (12.4))

0 1 2 3 4 5 6
0

0.2

0.4

0.6

ZIF, e (j)

ZIF (j)

Figure 12.3 Phase-response curve for IF
model (Eq. (12.1)). The function ZIF(ϕ) mea-
sures the sensitivity of the system to a small
external perturbation at different positions
ϕ. The corrected function ZIF,� (ϕ) does not

allow the oscillators to be moved over the
threshold by a spike. The values of ZIF are
plotted along the vertical axis and ϕ along
the horizontal.
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Figure 12.4 Examples of different PRCs: (a) Hodgkin–
Huxley model and (b) Connor model. Note that the func-
tions and their derivatives are zero at the ends of the inter-
val ϕ = 0 and ϕ = 2π . (Adapted from [32]).

is a useful model, which possesses quite a big generality by including the PRC as
some ‘‘infinite-dimensional’’ parameter.

12.1.3
System Description

Our main object of study is the following system of globally pulse-coupled phase
oscillators of the form

dϕj

dt
= 1 (12.9)

with the resetting rule

ϕk(t+) = 0, ϕj(t+) = ϕj(t−) + �

N
Z(ϕj(t−)), j �= k, (12.10)

where the velocity of the phase is assumed to be 1 without loss of generality. We
assume a fixed, positive overall coupling strength � > 0. The impact is rescaled
taking into account the number of oscillators [28]. In this study, we consider a
one-parametric family of the PRCs, which are positive and unimodal as shown
in Figure 12.5. The parameter β ∈ [0, 1] controls the position of the maximum,
namely, for larger β, the maximum is located in the domain of small ϕ, which
corresponds to a more sensitive excitatory response of the system just after spike.
For smaller β, the system is more sensitive to perturbations shortly before the
spike. The value β = 0.5 corresponds to an intermediate situation. We assume also
that Z′(0) = Z′(2π ) = 0, which is appropriate for a broad class of experimentally
and analytically obtained PRCs (Figure 12.4).

We note that the qualitative results reported in the chapter are independent on
the exact expression for the PRC, but rather on the shape of the PRC and its
behavior at ϕ = 0 and ϕ = 2π . Our particular choice is

Zβ (ϕ) = 1 − cos ϑβ (ϕ), β ∈ [0, 1] , (12.11)



12.1 Introduction 299

0 1 2 3 4 5 6
0

0.5

1

1.5

2
Z
b
 (j

)

b = 1 b = 0b = 0.5

j

Figure 12.5 Family of the unimodal PRCs Zβ (ϕ), see Eq. (12.11).

where

ϑβ (ϕ) = (1 − β)
ϕ2

2π
+ β

(
2π − (ϕ − 2π)2

2π

)
.

In particular, Z0.5(ϕ) = 1 − cos ϕ.
System (Eqs. (12.9) and (12.10)) is equivalent to an (N − 1)-dimensional discrete

dynamical system, which can be obtained as a return map by considering its state
each time when some of the phases reaches a fixed value, for example, ϕ1 = 2π .
Let us explain how this map appears. Without loss of generality, we may assume
that the phases are ordered as

2π = ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕN (12.12)

at t = 0. We use the important property of Eqs. (12.9) and (12.10) that the oscillators
do not overrun each other for all times if the system size N is sufficiently large.
Indeed, since the inequality

ϕj + �

N
Z(ϕj) ≥ ϕj+1 + �

N
Z(ϕj+1) (12.13)

holds for sufficiently large N, the order of oscillators is preserved during the spike.
It is also evident that the order is preserved between the spikes as well. More
exactly, the inequality 2π ≥ ϕ1+l ≥ ϕ2+l ≥ · · · ≥ ϕN+l ≥ 0 holds for all t, where l is
some shift and the indices are considered modulo N.

Let us introduce the map K1, which maps the initial phases (Eq. (12.12)) into
the phases at the moment when the oscillator ϕ2 reaches the threshold, that is,
ϕ2 = 2π. It is easy to obtain that

K1(ϕ1, ϕ2, ϕ3, . . . , ϕN ) =
(2π − μ(ϕ2), 2π , μ(ϕ3) + 2π − μ(ϕ2), . . . , μ(ϕN ) + 2π − μ(ϕ2)),

where

μ(ϕ) := ϕ + �

N
Z(ϕ). (12.14)

In a similar way, the mapping K2 exists, which maps the phases to the state, where
the third oscillator is at the threshold, and so on. The composition of maps

K = KN◦KN−1◦ · · · ◦K1 (12.15)
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gives the dynamical system on N-dimensional torus T
N

(ϕ1, . . . , ϕN ) → K(ϕ1, . . . , ϕN ), (12.16)

which maps the initial state (Eq. (12.12)) into a new state after all N oscillators have
crossed the threshold once and the first oscillator reaches again the threshold. We
call the map K return map.

In this chapter, we will not use the explicit form of the mapping (Eq. (12.15)).
For our purposes, it is important to conclude that the dynamics of system (Eqs.
(12.9) and (12.10)) are indeed equivalent to some (N − 1)-dimensional, discrete
dynamical system on the N-dimensional torus. The smoothness of this system
depends on the smoothness of its PRC function.

12.2
Numerical Results

In order to detect the appearance of one- or two-cluster states, we have numerically
computed the order parameters

R1(t) =
∣∣∣∣∣ 1

N

N∑
k=1

eiϕk(t)

∣∣∣∣∣ (12.17)

and

R2(t) =
∣∣∣∣∣ 1

N

N∑
k=1

ei2ϕk(t)

∣∣∣∣∣ . (12.18)

A perfect one-cluster state is characterized by R1 = R2 = 1 and a perfect antiphase
two cluster is characterized by R1 = 0 and R2 = 1. We present the results of
simulations for � = 0.5, but qualitatively, we observe similar behavior for a broad
range of � > 0.

As shown in Figure 12.6, we observe two qualitatively different types of behavior
depending on parameter β. For β < 0.5, that is, when the maximum of the PRC
is shifted toward the right (Figure 12.5), the one-cluster state seems to be the
attractor; for β > 0.5 and the maximum of the PRC is shifted toward the left, a
two-cluster state is attracting. We have chosen initial conditions in a vicinity of
a two-cluster state in Figure 12.6a and b, therefore the initial values of the order
parameters are R1 ≈ 0 and R2 ≈ 1. Figure 12.6b shows how the instability of the
two-cluster state implies desynchronization transient, after which the system is
attracted to a synchronous one-cluster state. Similar behavior occurs for other initial
conditions also. Figure 12.6c and d illustrates the order parameters behavior for
initial conditions close to the splay state (a state, where the phases are distributed).
The initial values for the order parameters in the splay state are close to zero, but
after a transient, they approach again the same asymptotic values as in Figure 12.6a
and b.

A more complicated behavior occurs for the intermediate value of the parameter
β = 0.5, that is, when the PRC is symmetric. In this case, the order parameters
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Figure 12.7 Dependence of the asymptotic values for the
order parameter R1 (a) and R2 (b) on β. For the most val-
ues of β, except β = 0.5, the order parameters tend to
some constant value, when initialized near the splay state
or the symmetric two-cluster state.

R1(t) and R2(t) do not approach some asymptotic constant values, but remain
periodic in time. As a result, the maximum asymptotic values of both R1 and R2

do not coincide with the corresponding minimum values. This type of behavior
is observed for a very small parameter interval of order 10−3 around β = 0.5. We
discuss it in Section 12.5 in more details. Figure 12.7 summarizes the behavior of
the order parameters for different β.
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12.3
Appearance and Stability Properties of One-Cluster State

In an ideal one-cluster synchronized state, all oscillators have the same phases
ϕj = ϕs for all j. This state is a fixed point of the map (Eq. (12.16)), because the
PRC turns to zero at ϕ = 2π and ϕ = 0. This means that the coupling vanishes for
one-cluster state. More exactly, when an oscillator ϕj fires, that is, ϕj = 2π , all other
oscillators have the phase 2π and do not obtain the spike. As a result, the period of
this state is determined simply by the uncoupled dynamics and equals 2π .

12.3.1
Inadequacy of the Linear Stability Analysis

In order to obtain conditions for the stability of one-cluster state, one can examine
the return map (Eq. (12.16)). The linearization of this return map around the
one-cluster state gives then the corresponding multipliers, which determine its
local linear stability. As it is expected, the local stability is governed by the
properties of the PRC at ϕ = 0 and ϕ = 2π . This procedure has been done in [20].
Applying these results to our case, the resulting conditions for the local linear
stability of one-cluster state is(

1 + �

N
Z′(2π−)

)l (
1 + �

N
Z′(0+)

)N−l
< 1, l = 1, N − 1. (12.19)

We observe that the necessary condition for the linear stability is that the derivatives
of Z(ϕ) at the ends of the interval [0, 2π ] do not vanish. This is not the case for
our PRC (Eq. (12.11)). Hence, all associated multipliers have modulus 1 and the
linear stability analysis do not provide useful information about the stability of
one-cluster state.

12.3.2
One-Cluster State is a Saddle Point

In this section, we show that one-cluster state is a saddle point, that is, there are
some arbitrary small perturbations of this state, which grow with time. At the same
time, some other small perturbations decay.

12.3.2.1 Existence of a Local Unstable Direction
First of all, let us show that one-cluster state is unstable with respect to the following
special perturbation:

ϕ1 = ϕs + ε, ϕ2 = · · · = ϕN = ϕs (12.20)

with arbitrary small ε > 0. During the period between spikes, the dynamics is
monotonous ϕj(t) = ϕs + t for j = 2, . . . , N and ϕ1(t) = ϕs + ε + t, thus, the distance
between the phases remain constant. Without loss of generality, we may assume
that

ϕ1(0−) = 2π , ϕ2(0−) = · · · = ϕN (0−) = 2π − ε.
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After the first oscillator moves over the threshold and resetting occurs, the phases
are as follows:

ϕ1(0+) = 0, ϕ2(0+) = · · · = ϕN (0+) = 2π − ε + �

N
Z(2π − ε) = μ(2π − ε).

The next resetting occurs at time t1 = 2π − ϕ2(0+) = ε − �
N Z(2π − ε) when the

group of N − 1 synchronous oscillators reaches the threshold. At this moment

ϕ1(t−1 ) = ε − �

N
Z(2π − ε) > 0, ϕ2(t−1 ) = · · · = ϕN (t−1 ) = 2π.

Now the group of N − 1 synchronous oscillators is at the threshold. The correct
definition of the firing rule for this case can be naturally obtained by extending
it to the situation when all the oscillators ϕ2, . . . , ϕN in the cluster have slightly
different phases and then allowing the phases to converge them to the same value.
This leads to the following resetting rule when passing the threshold by the N − 1
cluster:

ϕ1(t+1 ) = μN−1 (
ϕ1(t−1 )

) = μN−1
(
ε − �

N
Z(2π − ε)

)
, (12.21)

ϕ2(t+1 ) = · · · = ϕN (t+1 ) = 0, (12.22)

where μN−1 denotes the superposition of N − 1 functions μ◦μ◦μ◦ · · · ◦μ, where μ

is defined by Eq. (12.14). The resetting Eq. (12.21) simply means that the function
μ is applied N − 1 times (whenever an oscillator from the cluster ϕ2, . . . , ϕN fires)
in order to obtain the final position of ϕ1.

In this way, we obtain a mapping, which maps the initial size of the perturbation
ε at time t = 0 into its new size Y1(ε) at time t1. The mapping is

ε → Y1(ε) = μN−1
(
ε − �

N
Z(2π − ε)

)
. (12.23)

It is clear that Y1(0) = 0, what corresponds to the invariance of the one cluster,
and the stability properties of the origin of Eq. (12.23) determine the stability of
the one-cluster state with respect to the specific perturbation (Eq. (12.20)) chosen.
Up to the linear level, the origin of Eq. (12.23) is neutrally stable, that is, Y ′

1(0) = 1,
which is clear, since the one-cluster state is linearly neutrally stable. The second
derivative of Eq. (12.23) at ε = 0 is nontrivial

Y ′′
1 (0) = �Z′′(0) − �

N

(
Z′′(2π ) + Z′′(0)

)
and is positive for sufficiently large N since Z′′(0) > 0 for β ∈ (0, 1]. Hence, for
sufficiently large N, the origin of Eq. (12.23) is unstable, see Figure 12.8a. This
leads to the local instability of one-cluster state for all β ∈ (0, 1]. Accordingly to this,
the distance of the advanced oscillator ϕ1 from the remaining cluster will grow, but
this growth is not exponential.

12.3.2.2 Existence of a Local Stable Direction
Now let us show that the one-cluster state is locally stable with respect to perturba-
tions of the form

ϕ1 = ϕs − ε, ϕ2 = · · · = ϕN = ϕs (12.24)
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Figure 12.8 Local Cobweb diagram of the functions Y1(ε)
and YN−1(ε) around ε = 0. Iterations of these maps deter-
mine the behavior of special perturbations to the one-cluster
state. (a) Small perturbations grow with time; (b) small per-
turbations decay.

with ε > 0. This can be shown similarly to the previous case by obtaining the
discrete mapping, which describes the dynamics of the perturbation. In the case of
perturbations (Eq. (12.24)), this mapping reads

ε → YN−1(ε) = μ
(
2π − μN−1(2π − ε)

)
(12.25)

and has the following properties

YN−1(0) = 0,

Y ′
N−1(0) = 1,

and

Y ′′
N−1(0) = −�Z′′(2π ) + �

N

(
Z′′(2π ) + Z′′(0)

)
. (12.26)

It implies that for sufficiently large N the second derivative is negative and the
origin of the discrete mapping ε → YN−1(ε) is asymptotically stable (Figure 12.8b).
Hence, the one-cluster state is stable with respect to perturbations of the form
(Eq. (12.24)). This, together with the instability with respect to perturbations (Eq.
(12.20)), implies that the one-cluster state is the saddle point in the phase space
(see schematically Figure 12.9).

12.3.2.3 Other Stable and Unstable Local Directions
In general, the two-cluster perturbations of the one-cluster state are given by

ϕ1 (0) = · · · = ϕN1 (0) = 2π , (12.27)

ϕN1+1 (0) = · · · = ϕN (0) = 2π − ε, (12.28)

where N1 + N2 = N. This means, there are N1 oscillators in the front group and
the remaining N2 oscillators in the backgroup. The corresponding discrete 1-D
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1-Cluster

Figure 12.9 One-cluster state as a saddle point in the phase space with a homoclinic loop.

systems, which describe the dynamics of such perturbations are given by

ε → YN1 (ε) and ε → YN2 (ε),

where Yj(0) = 0, d
dε

Yj(0) = 1 for j = 1, . . . , N − 1 and

d2

dε2
YN1 (0) = �

N

(
N2Z′′(0) − N1Z′′(2π )

)
, (12.29)

d2

dε2
YN2 (0) = �

N

(
N1Z′′(0) − N2Z′′(2π )

)
. (12.30)

The expressions (Eqs. (12.29) and (12.30)) may have different signs depending on
the values of N1, N2, as well as the second derivatives Z′′(0) and Z′′(2π ). This implies
the existence of multiple unstable as well as stable directions to the one-cluster
solution, for more details, see Section 12.4.

12.3.3
Stable Homoclinic Orbit to One-Cluster State

Let us first note that the two clusters of the form (Eqs. (12.27) and (12.28)) do not
split with time. In geometric terms, this means, that the subspace corresponding to
such solutions is invariant. In particular, the subspace that corresponds to N1 = 1
and N2 = N − 1 is invariant as well. Being restricted to this invariant subspace, the
one-cluster state is a saddle point, as we have shown in the previous section. In
section 12.7, we prove that there exists a homoclinic orbit in this subspace, which
connects the both unstable and stable manifolds, see Figure 12.9. In fact, as will be
shown in Section 12.4, the dynamics within the invariant subspace is given by the
1-D mapping shown in Figure 12.11b.

Numerical calculations further support this result and show that the invariant
set, which is composed of a homoclinic loop and the fixed point is an attractor.
Figure 12.10 shows how the width of the cluster changes as time evolves for some
typical initial conditions. More specifically, we compute

�(t) = max
1≤i, j≤N

{∣∣ϕi(t) − ϕj(t)
∣∣} .

One can clearly observe that the width tends eventually to zero interrupted by some
blowouts. The blowouts correspond to the events, during which the first oscillator
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Figure 12.10 Width of the cluster �(t) =
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∣∣} as a function of

time. Panel (a) shows the behavior along the
orbit started at an initial condition close to
the splay state (far from the one cluster).

Panel (b) shows the behavior along the orbit
started close to the state (Eq. (12.20)). The
behavior indicates the existence of a stable
homoclinic orbit.

leaves behind the remaining cluster and makes a rotation in the phase. After the
rotation, it joins again the cluster and becomes the ‘‘last’’ one. The time interval
between such events grows unboundedly with time supporting the homoclinic
nature of the attractor. Note that the width of the cluster should be nonzero in
order to observe this phenomenon, that is, one should perturb the system slightly
from the fixed point, see Figure 12.9.

Finally, we would like to remark that the same methods allow proving the
existence of other homoclinic orbits, which correspond to two-cluster perturbations
(Eqs. (12.27) and (12.28)) with N1 
 N2. Hence, one should rather speak about an
attracting family of homoclinic orbits.

12.4
Two-Cluster States

Two-cluster state appears when the oscillators split into two groups (Figure 12.1)

ϕ1 = · · · = ϕN1 := ψ1, ϕN1+1 = · · · = ϕN1+N2 := ψ2. (12.31)

Contrary to one-cluster state, the two-cluster state must not be a fixed point of the
return map (Eq. (12.16)). Indeed, when two clusters appear, their relative behavior
is then given by the following discrete return map (by assuming that the return
map is computed for ψ1 = 2π and ψ2 < ψ1)

ψ2 → YN1 (ψ2) := 2π − μN2
(
2π − μN1 (ψ2)

)
. (12.32)
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This map has different properties depending on N1, N2 = N − N1, as well as on β.
All such maps have zero fixed point corresponding to the case when two clusters
merge into one. One can obtain

YN1 (0) = 0, YN1 (2π ) = 2π ,

Y ′
N1

(0) = 1, Y ′
N1

(2π ) = 1,

and

Y ′′
N1

(0) = �

N

(
N2Z′′(0) − N1Z′′(2π )

)
,

Y ′′
N1

(2π ) = �

N

(
N2Z′′(2π ) − N1Z′′(0)

)
.

Figure 12.11 shows typical maps for three different situations. (a) The map has
an unstable fixed point inside the interval [0, 2π ] and the endpoints x = 0 and
x = 2π are asymptotically stable. Hence, within the corresponding subspace, the
one-cluster state is asymptotically stable (similarly to Figure 12.8b). (b) The map
has unstable fixed point at x = 0 and stable at x = 2π . This case corresponds
exactly to the case, when the one-cluster state has a homoclinic orbit starting in
x = 0 and ending at x = 2π (0 ∼ 2π on the torus). (c) The map has a stable fixed
point inside the interval [0, 2π ] and the endpoints x = 0 and x = 2π are unstable.
Hence, within the corresponding subspace, the one-cluster state is asymptotically
unstable and the two-cluster stationary state is stable.

The fixed points of the map (Eq. (12.32)) give two-cluster stationary states:

ψ2 = YN1 (ψ2). (12.33)

The condition for the merging of two cluster into one cluster is given by the
condition for the existence of the double root of the function YN1 (ψ) at ψ = 0 or
ψ = 2π , that is, Y ′′

N1
(0) = 0 or Y ′′

N1
(2π ) = 0. This results into

N1Z′′(0) = N2Z′′(2π ). (12.34)
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Figure 12.11 Typical behavior of functions YN1 (x)
(Eq. (12.32)), which determine the behavior of two clusters,
N1 = 150 and N = 500.
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Figure 12.12 Positions of the two-cluster states δ = 2π −
ψ2, where ψ2 are fixed points of Eq. (12.33). Different lines
correspond to different cluster splittings, that is, N1 = pN,
N2 = (1 − p)N. At δ = 0 or δ = 2π , the corresponding two
cluster is merging into the one cluster.

Expression (Eq. (12.34)) determines also the moments when one-cluster state

undergoes bifurcations. At such bifurcation, two different nonsymmetric two

clusters bifurcate from the one-cluster state: one with N1 = pN, N2 = (1 − p)N, and

another with N1 = (1 − p)N, N2 = pN. The bifurcation diagram in Figure 12.12

shows some of the branches of two clusters, which originate from ψ2 = 0 or

ψ2 = 2π .

The bifurcations for β < 0.5 are subcritical. Namely, the two-cluster states are

unstable and they merge into the one-cluster state. With increasing β the one-cluster

state becomes more and more locally unstable by transforming stable directions

into homoclinics (Figure 12.11). In spite of this fact, we observe numerically,

that the invariant set, which is composed of the one-cluster state and homoclinic

connections is still attracting in the phase space. All two-cluster states, which exist

at this moment, are unstable. As a result, one computes high values of the order

parameters R1 and R2 on the numerically obtained Figure 12.7 for β < 0.5.

12.4.1
Stability of Two-Cluster States

For β > 0.5, the invariant set composed of one-cluster state and homoclinic orbits

losses its stability and two-cluster states emerge, which are asymptotically stable.

Numerical results in Figure 12.13 show which two clusters are stable depending

on the parameter β. In general, for β closer to 0.5, the symmetric clusters with

p ≈ 0.5 are stable. As β increases, the more asymmetric clusters stabilize as well.

This implies that the PRCs with the maximum, which is shifted toward the left

favor the coexistence of a large number of stable branches of two clusters.
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Figure 12.13 Stability and existence of
two-cluster states. (a) Solid lines denote sta-
ble two-cluster stationary states and dashed
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set of branches for all possible p exist. Panel
(b) shows which two clusters are stable in
dependence on β (obtained numerically).
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12.5
Intermediate State for Symmetric PRC with β = 0.5

The case of symmetric PRC for β = 0.5 is degenerate. When increasing β through
0.5, the homoclinic sets including the one-cluster state become unstable and
a two-cluster state becomes stable as it is described in the previous section.
The numerical calculations for β = 0.5 show nonstationary dependence of the
order parameters on time, see Figure 12.14. One observes periods of time, when
two clusters persist. These periods are characterized by almost constant order
parameters. The periodic blowouts of the order parameters correspond to the
behavior, during which the oscillators from the advancing cluster spread over a big
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Figure 12.14 Nonstationary behavior of the order param-
eters R1 and R2 with time for β = 0.5001. One observes
periodic restructuring of two clusters.
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part of the phase circle and finally form another cluster behind (see the inset in
Figure 12.14).

12.6
Conclusions

In this chapter, we have studied the asymptotic behavior of a system of globally
pulse-coupled phase oscillators (Eqs. (12.9) and (12.10)) with the phase-response
function, which is positive, unimodal, and turns zero at the threshold together with
its first derivative. In particular, we considered the question how the position of the
maximum of the PRC influences the dynamics of the coupled system.

We have numerically observed that for the PRCs with the maximum shifted to
the right (for our model, it corresponds to β < 0.5), a one-cluster state becomes
apparently stable. More detailed analysis reveals that the one-cluster state is, in fact,
asymptotically locally unstable, that is, a generic small perturbation will grow with
time. Moreover, we show that trajectories of the system has a behavior, which is
characterized by long-time intervals when the system stays close to the one-cluster
state and long excursions away from the one-cluster state (Figure 12.10). The
excursions become less and less frequent with time. This behavior is explained
by the existence of the family of homoclinic orbits to the one-cluster state, which
altogether form an attracting set in the phase space of the system.

In the case, when the maximum of the PRC is shifted to the left, that is,
the oscillators are mostly sensitive to perturbations in the phase just after the
threshold, the one-cluster state no more dominates the dynamics and various
stationary two-cluster states become stable. These two-cluster states bifurcate
from the one-cluster state as parameter β increases. First, at β = 0.5, there
appears a symmetric two cluster with equal number of oscillators in each
cluster. With further increasing β more and more asymmetric clusters ap-
pear and become stable leading to the increasing coexistence of stable two
clusters.

12.7
Appendix: Existence of a Homoclinic Orbit

Theorem For β ∈ (0, 1), there exists N0, such that for populations of size N > N0, system
(Eq. (12.16)) possesses a homoclinic trajectory, which connects the one-cluster stationary
state. The homoclinic trajectory has the form

2π = ϕ2(n) = · · ·ϕN (n) �= ϕ1(n) (12.35)

where limn→−∞ ϕ1(n) = 0+ and limn→+∞ ϕ1(n) = 2π−.

Proof. Fix β ∈ (0, 1) . We will consider

Y1 (N, x) = 2π − μ
(
N, 2π − μN−1 (N, x)

)
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where μj (N, x) denotes the jth iteration of

x 
→ μ (N, x) = x + �

N
Zβ (x) .

�

The map Y1 (N, x) describes the evolution of the distance x ∈ (0, 2π) during a
time interval in which all oscillators of a population ϕ1 = x; ϕ2 = · · · = ϕN = 2π ,
emit exactly one spike. Homoclinicity then is equivalent to

Yk
1 (N, x) → 2π , for all x ∈ (0, 2π) , as k → ∞

where Yk
1 (N, x) denotes the kth iteration of x 
→ Y1 (N, x) . Analogously to the

analysis of Section 12.4, we find that

Y1 (N, 0) = 0, Y1 (N, 2π) = 2π ,

Y ′
1 (N, 0) = Y ′

1 (N, 2π) = 1,

Y ′′
1 (N, 0) > 0, Y ′′

1 (N, 2π) > 0.

Here and in the following, primes denote the derivatives with respect to the
second argument (phase). For fixed N, there exists a rejecting region (0, εN),
where Y ′′

1 (N, x)> 0, for x ∈ (0, εN) and an attracting region (2π − εN , 2π) with
Y ′′

1 (N, x)> 0, for x ∈ (2π − εN , 2π) . This gives

Y
k0
1 (N, x) > εN ,

for x ∈ (0, εN) and some finite k0 = k0 (N, x) ∈ N, and

Yk
1 (N, x) → 2π ,

for k → ∞ and x ∈ (2π − εN , 2π) . Our goal is to show, that there exists a uniform
ε0 > 0, such that for all N > N0 :

Y ′′
1 (N, x) > 0, for x ∈ (0, ε0) and

Y ′′
1 (N, x) > 0, for x ∈ (ε0, 2π − ε0) ,

and such that for all N > N0 and all x ∈ [ε0, 2π − ε0] :

Y1 (N, x) > x + �N ,

with

�N := min
x∈[εN ,2π−εN ]

Y1 (N, x) − x > 0.

Thus, any x ∈ (0, 2π) will reach the attracting region (2π − ε0, 2π) within a finite
number of iterations of x 
→ Y1 (N, x) . Let us write

Y1 (N, x) = Ỹ1 (x) + 1

N
w(N, x),

where Ỹ1 (x) = x + �Zβ (x) is independent of N. For Ỹ1 we have

Ỹ1 (x) > x, for x ∈ (0, 2π) ,

Ỹ1 (0) = 0, Ỹ1 (2π) = 2π ,

Ỹ ′
1 (0) = Ỹ ′

1 (2π) = 1,
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This implies for

w (N, x) = N
(

Y1 (N, x) − Ỹ1 (x)
)

that

w (N, 0) = w (N, 2π) = 0,

w′ (N, 0) = w′ (N, 2π) = 0.

We will show that the region [0, εN ] may be chosen as [0, ε0] , independently on large
N. The analysis for the other region [2π − ε0, 2π ] can be done similarly. Around
x = 0, we have the following representation of Y1 (N, x):

Y1 (N, x) = Y1 (N, 0) + Y ′
1 (N, 0) x + x2

2
Y ′′

1 (N, ξN)

= Ỹ1 (0) + Ỹ ′
1 (0) x + x2

2
Ỹ ′′

1 (ξN)

+ 1

N

(
w (N, 0) + w′ (N, 0) x + x2

2
w′′ (N, ξN)

)

= x + x2

2

(
Ỹ ′′

1 (ξN) + 1

N
w′′ (N, ξN)

)
,

for some ξN ∈ [0, ε] . Further it holds Ỹ ′′
1 (0) > 0. This means, there exists an ε0 > 0,

such that for x ∈ [0, ε0] , Ỹ ′′
1 (x)> 0. Now, we construct an N-independent lower

bound for w′′ (N, x) in x ∈ [0, ε0] , where ε0 will be further altered in the analysis
without always choosing a new notation. In other words, we claim that there exists
c0 ∈ R with

lim inf
N→∞

(
min

x∈[0,ε0]
w′′ (N, x)

)
> c0. (12.36)

We have

w (N, ε) = N
(

Y1 (N, x) − Ỹ1 (x)
)

= N
(
2π − μ

(
2π − μN−1 (N, x)

) − x − �Zβ (x)
)

= N
(
μN−1 (N, x) − �

N
Zβ

(
2π − μN−1 (N, x)

) − x − �Zβ (x)
)

= N

⎛
⎝ �

N

N−2∑
j=0

Zβ

(
μj (N, x)

) − �

N
Zβ

(
2π − μN−1 (N, x)

) − �Zβ (x)

⎞
⎠

= �

N−2∑
j=0

(
Zβ

(
μj (N, x)

) − Zβ (x)
) − �Zβ

(
2π − μN−1 (N, x)

) − �Zβ (x)︸ ︷︷ ︸
≡I

.

Since part I, as well as its derivatives, is obviously uniformly bounded in N and x,
we restrict us to establish Eq. (12.36) for

w̃ (N, x) =
N−2∑
j=0

[
Zβ

(
μj (N, x)

) − Zβ (x)
]
.
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We have

w̃′ (N, x) =
N−2∑
j=0

[
Z′

β

(
μj (N, x)

) (
μj (N, x)

)′ − Z′
β (x)

]
,

w̃′′ (N, x) =
N−2∑
j=0

[
Z′′

β

(
μj (N, x)

) ((
μj (N, x)

)′)2
(12.37)

+Z′
β

(
μj (N, x)

) (
μj (N, x)

)′′ − Z′′
β (x)

]
.

To handle this, we need some uniformity properties of μj(N, x). Elementary
calculations give

(
μj (N, x)

)′ =
j−1∏
k=0

μ′
(

N, μk (N, x)
)

=
j−1∏
k=0

(
1 + �

N
Z′

β

(
μk (N, x)

))
,

(
μj (N, x)

)′′ =
j∑

l=0

j−1∏
k=0, k �=l

[(
1 + �

N
Z′

β

(
μk (N, x)

))]

× �

N
Z′′

β

(
μl (N, x)

) (
μl (N, x)

)′
.

This implies that the following inequality

0 <
(
μj (N, x)

)′
< exp

(
�ζ ′) , where ζ ′ ≡ max

x∈[0,2π ]

∣∣Z′
β (x)

∣∣ (12.38)

holds for all large enough N. This again yields

x ≤ μj (N, x) = μj (N, 0) +
∫ x

0

(
μj

(
N, y

))′
dy

≤ x + x exp
(
�ζ ′) . (12.39)

Using this upper bound, we get some N-independent ε0, such that for x ∈ [0, ε0]

Z′′
β

(
μk (N, x)

)
> 0.

This gives N-independent monotonicity of

x 
→ Z′
β

(
μk (N, x)

)
> 0 for x ∈ (0, ε0) .

Further, we can use Eq. (12.39) to improve the bounds (Eq. (12.38)) for
(
μj (N, x)

)′

in x ∈ [0, ε0] to

1 ≤ (
μj (N, x)

)′
< exp

(
�ζ ′) . (12.40)

This implies

μj (N, x) < x · exp
(
�ζ ′) .

We find

0 <
(
μj (N, x)

)′′ ≤ j�ζ ′′

N
exp

(
2�ζ ′) ≤ �ζ ′′ exp

(
2�ζ ′)
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where

ζ ′′ ≡ max
x∈[0,2π ]

∣∣Z′′
β (x)

∣∣ .
Now observe that

Z′′
β (0) + Z′′′

β (0) =
(

4 − 8

π

)
β2 + 2

π
β + 1

π
> 0,

that is, eventually further decreasing of ε0 > 0 gives, with ε̃0 = ε0 · exp
(
�ζ ′) :

min
y∈[0,ε̃0]

Z′′
β

(
y
)
>− min

y∈[0,ε̃0]
Z′′′

β

(
y
)
. (12.41)

Hence, for x ∈ [0, ε0] :

w̃′′ (N, x) =
N−2∑
j=0

⎛
⎜⎝Z′′

β

(
μj

) ((
μj

)′)2
+ Z′

β

(
μj

) (
μj

)′′︸ ︷︷ ︸
≥0

−Z′′
β (x)

⎞
⎟⎠

≥
N−2∑
j=0

(
Z′′

β

(
μj

) ((
μj

)′)2
− Z′′

β

(
μj

) +
∫ μj

x
Z′′′

β

(
y
)

dy

)

=
N−2∑
j=0

(
Z′′

β

(
μj

) (((
μj

)′)2
− 1

)
+

∫ μj

x
Z′′′

β

(
y
)

dy

)

≥
N−2∑
j=0

(
min

y∈[0,ε̃0]
Z′′

β

(
y
) (((

μj
)′)2

− 1
)

+ min
y∈[0,ε̃0]

Z′′′
β

(
y
) (

μj − x
))

where we have omitted the arguments (N, x) of μ for brevity. Using Eq. (12.41), we
continue the estimations

· · · ≥
N−2∑
j=0

(
min

y∈[0,ε̃0]
Z′′

β

(
y
) (((

μj
)′)2

− 1 − (
μj − x

)))

= min
y∈[0,ε̃0]

Z′′
β

(
y
) N−2∑

j=0

⎛
⎜⎜⎝

⎛
⎜⎝(

μj
)′︸︷︷︸

≥1

⎞
⎟⎠

2

− 1 −
∫ x

0

⎛
⎜⎜⎝(

μj
)′︸︷︷︸

≤μj

−1

⎞
⎟⎟⎠ dy

⎞
⎟⎟⎠

≥ min
y∈[0,ε̃0]

Z′′
β

(
y
) N−2∑

j=0

(((
μj

)′) − 1 − x
((

μj
)′ − 1

))

≥ min
y∈[0,ε̃0]

Z′′
β

(
y
) N−2∑

j=0

(1 − x)
((

μj
)′ − 1

)
≥ 0.

This establishes Eq. (12.36) and hence Y1 (N, x) > x ∈ [0, ε0] for large enough N.
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13
Broadband Chaos
Kristine E. Callan, Lucas Illing, and Daniel J. Gauthier

13.1
Introduction

The study of chaotic dynamics has been an active area of interdisciplinary research
since the 1970s. Today, researchers are interested in practical applications of chaos,
such as communications [1, 2], ranging [3], and ultra-wide-band (UWB) sensor
networks [4], which require simple devices that produce complex and high-speed
dynamics. To produce the high-dimensional chaos required for applications, a
nonlinear system needs to have a high-dimensional phase space. One way to
achieve this effect in relatively simple devices is to incorporate time-delayed
feedback, as depicted in Figure 13.1. Furthermore, since all physical signals travel
at finite speeds, it is important to understand how inherent time delays in both
natural and man-made systems interact with nonlinearities to influence their
behavior.

Time-delayed feedback systems obey delay differential equations (DDEs), rather
than ordinary differential equations (ODEs). A DDE is an equation in which the
state of a dynamic variable at a given time depends on the values of the dynamic
variables at both current and previous times, unlike ODEs where only values at
current times matter [5]. An example of a generic DDE with a single time delay τ

is given by

ẋ(t) = F[x(t), x(t − τ )] (13.1)

where F is an arbitrary function of the current and delayed variables.
The phase space corresponding to a DDE is infinite-dimensional, allowing for

the possibility of the previously mentioned high-dimensional chaotic solutions.
Therefore, systems with sufficiently long time-delayed feedback can often be
comprised of a small number of simple components and yet can still give rise to
rich dynamics (including chaos) because of their infinite-dimensional phase space.

Studying experimental time-delayed feedback systems has provided much-
needed insight about the solutions and properties of particular classes of DDEs.
Since DDEs are commonly used to model the behavior of many types of systems
(i.e., physiological diseases [6], population dynamics [7], neuronal networks [8], as

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 13.1 Schematic of a simple nonlinear
time-delay system with feedback gain K and time
delay τ .

well as nonlinear optical devices [9]), these results have important implications for
many different fields of study.

One example of such a result is the broadband chaos we observe in a particular
nonlinear time-delayed feedback system: an optoelectronic oscillator. The spectra
of typical chaotic devices are broadband, yet they often contain several sharp peaks
that stand out above the broad background. These features correspond to weakly
unstable periodic orbits that comprise the backbone of the strange attractor. The
fact that the power spectra for typical chaotic devices are not featureless limits their
utility in the applications mentioned above.

In contrast, we will show in this chapter that our optoelectronic oscillator displays
high-speed chaos with an essentially featureless power spectrum for certain choices
of parameter values, as reported in [10]. The flat nature of the spectrum makes
it difficult to distinguish from white noise, which could be attractive for use
in applications where one wants there to be a low probability of detecting the
deterministic signal.

Additionally, we find that the chaotic behavior coexists with a linearly stable
quiescent state. If the system starts in this state, a finite perturbation of sufficient
amplitude can force the system to the chaotic state. Furthermore, the transition
between the two states takes the form of a train of ultrafast pulses that overlap and
merge to eventually give rise to the chaotic solution. We will explain how these
observations motivate a nonlinear stability analysis of the steady state, which yields
excellent agreement with our experimental results.

13.2
Optoelectronic Oscillators

Optoelectronic oscillators have frequently been used as a benchtop tool for studying
nonlinear time-delayed feedback, with their origins dating back to the seminal work
of Ikeda [9]. The essential ingredients for such a system include a constant intensity
optical power source, a nonlinear device to modulate the optical signal, an element
to provide gain to compensate for any losses, and a feedback delay line with a
timescale longer than the characteristic timescales of the resulting dynamics. The
finite propagation time necessary for light to traverse the loop and its nonlinear
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interaction with the modulator results in new types of instabilities. In particular,
Ikeda showed that multiple stable steady states and periodic states can coexist for
the same parameter values. Ikeda also showed numerically that, as the feedback
gain is slowly increased, the steady state becomes unstable and subsequently
undergoes a period-doubling bifurcation to chaos. Shortly after Ikeda’s prediction
in 1979, this behavior was first observed experimentally by Gibbs et al. [11] in 1981.

After the pioneering work of Ikeda and others, several more experiments were
designed in order to investigate the behavior of nonlinear time-delayed feedback
systems. One reason these devices became so popular is that the generated chaos
could be of arbitrarily high dimension: Farmer showed that the dimension of
chaotic attractor increases as a function of the delay [12]. Additionally, the speed
of these systems began to increase with advances in technology, making them
even more attractive for certain applications. Along with the increase in speed,
however, came components that were ac-coupled, meaning that signals below a
certain frequency (fh) were blocked. This led to a new class of DDEs, which is used
to model modern high-speed optoelectronic oscillators.

The dynamics of this new class of high-speed optoelectronic oscillator were
recently studied by Peil et al. [13]. They showed both experimentally and numerically
that their device was capable of producing a variety of rich behaviors, including fast
square-wave solutions, low-frequency periodic solutions, breathers [14], multipulse
dynamics, and chaos. In addition to its wide range of dynamics, the utility of
this device has also been successfully demonstrated in the realm of secure chaos
communication [15]. The chaos generated by the optoelectronic oscillator was used
to encode a message, and the resulting signal was transmitted over 120 km of
optical fiber using the metropolitan area network of Athens, Greece. The message
was then retrieved using chaos synchronization with an identical device at the end
of the line. The transmission rates were on the order of gigabits per second. See
Chapter 14 by Kanter and Kinzel for a more detailed discussion of secure chaos
communication.

Our optoelectronic oscillator is similar to the one studied in [13]. In greater
detail, and as shown in Figure 13.2, the beam generated by a continuous-wave
semiconductor laser (wavelength 1.55 μm) is injected into a single-mode optical
fiber, passes through a polarization controller and optical attenuator, and is
injected into a Mach–Zehnder modulator (MZM). Light exiting the modulator
passes through an additional piece of single-mode fiber (length ∼5 m) serving as a
delay line and is incident on a photodetector. Half of the resulting signal, denoted
by V , is amplified by an inverting modulator driver (gain gMD = −22.6) and fed back
to the MZM via the ac-coupled input port. The other half of the signal is directed
to a high-speed oscilloscope (8 GHz analog bandwidth, 40 GS s−1 sampling rate).
The gain in the feedback loop, the bias voltage applied to the MZM, and the length
of the time delay are all easily accessible parameters that determine the dynamics
of the measured voltage.

To model the dynamics of the optoelectronic system, one needs to consider the
nonlinear transmission functions of the MZM and modulator driver, the finite
bandwidth of the system components, and the amount of time it takes the signal
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Figure 13.2 (a)Schematic of optoelectronic oscillator. Non-
linear transmission functions of MZM (b) and modulator
driver (c).

to propagate from the output of the MZM back to the radio frequency (rf) input of
the MZM.

The MZM modulates the intensity of an incident optical signal by exploiting Pock-
els electro-optic effect in a lithium niobate crystal in one arm of a Mach–Zehnder
interferometer. When the signals from each arm of the interferometer are recom-
bined at the output, their resulting interference depends on a constant bias voltage
(VB) and a fluctuating rf voltage (Vin(t)) applied to two electrodes across the crystal.
The optical power (Pout) transmitted through the devices is given by

Pout = Pincos2

[
π

2

(
VB

Vπ , dc
+ Vin

Vπ ,rf

)]
(13.2)

where Pin is the power incident on the MZM, and Vπ ,dc and Vπ ,rf characterize
the widths of the interference fringe (Vπ , rf=7.4 V, Vπ ,dc = 7.7 V). The interference
fringe obtained by slowly varying VB is shown in Figure 13.2b.

The modulator driver also has a nonlinear response: it saturates at high voltage
with a saturation voltage of Vsat = 9.7 V. We model this saturation with a hyperbolic
tangent function, as shown in Figure 13.2c. We find it essential to take into account
this additional nonlinearity, as it limits the extent to which we can access multiple
fringes of the MZM interference curve.
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The high-speed components in our device are bandpass-coupled so that feedback
of both low and high frequencies are suppressed. This differs from Ikeda’s original
model, which only incorporated low-pass filtering, and it has been shown that the
inclusion of a high-pass filter results in fundamentally different dynamics [16]. We
use a two-pole bandpass filter to approximate the effects of bandpass coupling,
with low- (high-) frequency cutoff ω− = 1.5 × 105 s−1 (ω+ = 7.5 × 1010 s−1), center
frequency ω0 = √

ω−ω+ = 1.1 × 108 s−1, and bandwidth � = ω+ − ω− = 7.5 ×
1010 s−1.

Finally, we measure the time delay of the feedback loop to be approximately
24 ns. Thus, our oscillator has three widely separated timescales: the time delay
of the feedback (on the order of 10 ns), the high-pass filter response time (on the
order of microseconds), and the low-pass filter response time (on the order of 10
ps). Other researchers have found that these timescales play a prominent role in
the dynamics they observe [13].

By combining the effects of the nonlinearities, bandpass filtering and time delay,
we derive an integro-delay differential equation describing the fluctuating voltage
V(t) [17]

V(t) + 1
�

dV(t)
dt

+ ω2
0

�

∫ t

0
V(l)dl

= G cos2

{
πVB

2Vπ ,dc
+ πVsat

2Vπ ,rf
tanh

[
gMDV(t − T)

Vsat

]}
(13.3)

where G characterizes the gain in the feedback loop (proportional to the injected
optical power) in units of volts and all other variables have previously been defined.
We can then rewrite this integro-delay differential equation as two coupled DDEs
given by

1

�

dV(t)

dt
= −V(t) − U(t) + G cos2

{
m + d tanh

[
gMDV(t − T)

Vsat

]}
, (13.4)

1

�

dU(t)

dt
= ω2

0

�2
V(t) (13.5)

where m = πVB/2Vπ ,rf is the dimensionless operating point of the nonlinearity and
d = πVsat/2Vπ ,rf characterizes the saturation of the modulator driver. By defining
dimensionless variables

x = gMD

Vsat
V , (13.6)

y = gMD

Vsat
U − K cos2m, (13.7)

and rescaling time (s = t�), we obtain two coupled dimensionless DDEs

ẋ(s) = −x(s) − y(s) + F[x(s − τ )], (13.8)

ẏ(s) = εx(s). (13.9)

Here, the overdot denotes the derivative with respect to the dimensionless time s, K
is the dimensionless feedback loop gain, τ = T� is the dimensionless time delay,
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Figure 13.3 The experimental time series
(a) and power spectral density (b) of the
broadband chaotic behavior in the optoelec-
tronic oscillator for m = 0.063 and K = 3.47
(upper trace). We find that the spectrum is
flattest (i.e., the small peaks corresponding
to T nearly vanish) for m � 0. The power
spectral density of the noise floor obtained

below threshold (lower trace) is also shown.
Theoretically predicted time series (c) and
power spectral density (d) for m = 0.063 and
K = 3.47. The numerical time series contains
higher frequency components than the ex-
perimental time series, since the bandwidth
of the oscilloscope affects the experimental
time series.

ε = ω2
0/�

2 characterizes the bandpass filter, and the nonlinear delayed feedback
term is

F[x] = K cos2 (
m + d tanh x

) − K cos2m. (13.10)

In our experiments, three parameters are held fixed (d = 2.1, τ = 1820, and ε = 2.0 ×
10−6), while K can range from 0−5 by adjusting the injected optical power with an
attenuator and m ranges from −π/2 to π/2. For future reference, note that V and
its dimensionless analog x have opposite signs because gMD < 0.

One important distinction of our work is that we bias the MZM near the top
of an interference fringe (m ≈ 0), which, as we will show in the next section, is
where the quiescent state of the system is the most linearly stable. It is in this
regime where we obtain the broadband chaotic behavior shown in Figure 13.3a.
The one-sided power spectral density (PSD) of the experimental chaotic time series
with a resolution bandwidth of 8 MHz is shown in Figure 13.3b. One can see
that the power spectrum is essentially ‘‘featureless,’’ as it is roughly flat up to the
cutoff frequency of the oscilloscope used to measure the dynamics (8 GHz). More
precisely, the spectrum is contained with a range of 12 dB with a standard deviation
of 2 dB for frequencies below 8 GHz.

To further emphasize the flatness of the chaotic spectrum, we compare our
results to the case where the oscillator is in the quiescent state, just below the
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instability threshold to be discussed in the next section. As seen in Figure 13.3b,
the PSD is at least 40 dB below the PSD of the chaotic state and is qualitatively
consistent with the noise floor of the overall system. Quantitatively, the noise floor
is contained within a range of 18 dB with a standard deviation of 2 dB. Comparing
the statistics for both spectra shows that the spectrum of the broadband chaos is
nearly as featureless as the spectrum of the system noise.

One can obtain a qualitatively similar time series and spectrum by integrating
the (noise-free) Eqs.(13.8) and (13.9), as shown in Figure 13.3c,d, indicating that the
flat, broad spectrum is due to the deterministic dynamics rather than experimental
noise. We also determine a positive largest Lyapunov exponent of ∼0.03 ns−1,
showing that the trajectory is indeed chaotic.

In the following sections, we explain how this broadband chaotic solution can be
accessed with either experimental noise or a controlled perturbation, despite the
fact that we are operating in the regime where the quiescent state is linearly stable.

13.3
Instability Threshold

As a starting point for understanding the dynamics of the oscillator, we first study
the linear stability of the single fixed point of Eqs. (13.8) and (13.9). This type of
analysis provides insight as to how the system will respond to small perturbations.
Chapter 7 by Krauskopf and Walker also discusses the stability and bifurcation
properties of DDEs.

The fixed point (x∗, y∗) = (0, 0) is found by setting both derivatives equal to zero
and corresponds to the quiescent state of the oscillator. If we then Taylor-series
expand the nonlinear term F[x(t − τ )] about x∗ = 0 and assume a perturbation of
the form δy = eλs, we obtain the resulting characteristic equation

λ2 + λ + ε + bλe−λτ = 0 (13.11)

where b = −K d sin (2m) is the effective slope of the nonlinearity in the vicinity
of the fixed point. Here, λ represents the infinite number of eigenvalues whose
real parts determine the stability of the solution. The quiescent state becomes
linearly unstable when �[λ] becomes positive, corresponding to exponential growth
away from the steady-state solution. Thus, by setting �[λ] = 0 and �[λ] = 	, we
determine the instability threshold of the quiescent state from

(i	)2 + i	 + ε + b(i	)e−i	τ = 0. (13.12)

Separating the real terms from the imaginary terms gives the following set of
equations for the instability threshold

−	2 + ε − b	 sin(	τ ) = 0, (13.13)

1 − b cos(	τ ) = 0. (13.14)

Note that these equations remain unchanged for 	 → −	 and, for ε > 0, there is
no solution for 	 = 0. This implies that the eigenvalues cross the imaginary axis in
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complex conjugate pairs, which is the signature of a Hopf bifurcation. With τ and
ε set to the values appropriate for our experimental setup, Eqs. (13.13) and (13.14)
can be used to determine the values of 	 and b that give rise to a Hopf bifurcation.
While the frequency of the oscillatory motion at the onset of a Hopf bifurcation (	)
is often of interest, here we are mainly concerned with finding b since, for a given
m, it determines the gain for which a Hopf bifurcation occurs according to

KH = − b

d sin(2m)
. (13.15)

For the parameter values corresponding to our experimental setup, we find that
b ≈ 1 for m < 0 and b ≈ −1 for m > 0. One can see that, for m = 0, which
corresponds to the operating point at the top of the interference fringe, KH diverges
and the quiescent state of the model is linearly stable for all values of K, as shown
by the solid lines in Figure 13.4.

Experimentally, however, we find that the situation is much more complicated
than linear stability analysis predicts. In particular, as we increase K near m =
±π/4, we find excellent agreement between the value of K for which the quiescent
state is destabilized and KH, as shown in Figure 13.4a. Near m = 0, however, we
find that the quiescent state is destabilized well before KH is reached, as shown with
the squares in Figure 13.4b. Interestingly, it is also near m = 0 where we observe
broadband chaos. One can also notice a slight asymmetry in the experimentally
determined instability threshold about m = 0, which is not predicted by linear
stability analysis.

Next, we investigate the influence of noise on the instability threshold by using
an erbium-doped fiber amplifier, in succession with an attenuator, to add more
noise to the system while keeping the total optical power the same. We find that,
by increasing the root-mean-square noise in V by a factor of 2.3 (over a bandwidth
from dc to 8 GHz), we observe a substantial decrease in the instability threshold, as
shown by the diamonds in Figure 13.4b. In addition, the asymmetry in the threshold
is also more pronounced than in the low-noise case. Our findings indicate that the
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presence of experimental noise in our system, due to laser relaxation oscillations
and detector dark and shot noise, is responsible for the deviation from the linear
theory. As shown in Section 13.5, these features can be understood with a global
(nonlinear) stability analysis of the model.

13.4
Transition to Broadband Chaos

To further explore the region in parameter space where broadband chaos is
observed and the dynamics appear to deviate from the linear theory, we look at
how the system leaves the quiescent state at the instability threshold for m ≈ 0. A
representative time series of this transient behavior is shown in Figure 13.5. One
can see that at around 50 ns, a small pulselike perturbation (due to noise) in V
appears. At a time T later, this pulse is regenerated, but with a greater amplitude.
Subsequent pulses (with a full width at half maximum of ∼200 ps) continue to
be generated each T and grow in amplitude until they begin to fold over the
nonlinearity around 0.4 V and finally saturate at a maximum amplitude of about
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Figure 13.5 The transient behavior that occurs in the opto-
electronic oscillator when the quiescent state first loses sta-
bility for parameter values m = 0 and K = 4.36. The initial
7 μs of data (a) shows the complex breather-like behavior.
A zoom in of the first 500 ns (b) shows the growing pulse
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1 V (corresponding to the input saturation voltage of the amplifier). Since noise
spikes occur at random times, there can be more than one of these growing pulse
trains contributing to the transient behavior (e.g., notice the spike around 280 ns).
In our experiments, this pulsing transient eventually gives rise to the broadband
chaos we are interested in. This behavior is also verified in noise-free numerical
simulations of Eqs. (13.8) and (13.9).

However, the perturbations necessary to drive the system away from the linearly
stable quiescent state do not have to originate from experimental noise. One can
also apply a controlled perturbation and study its effect on the system’s dynamics,
both experimentally and numerically. By injecting 200 ps long electrical pulses
of varying amplitudes into the feedback loop for values of K below the instability
threshold, we find that, in general, a single input pulse will generate a train of
pulses spaced in time approximately by T . For a small initial pulse amplitude,
the subsequent pulse train will decay back to the quiescent state. For sufficiently
large initial pulse amplitude, however, the subsequent pulse train grows and the
steady-state solution is lost. For sufficiently large K, the system transitions to the
chaotic state in a manner quite similar to the transient observed when noise was
providing the initial perturbation. An example of both a decaying and growing
pulse train are shown in Figure 13.6. We observe similar results numerically when
we integrate the DDEs using a Gaussian pulse with the same width as in the
experiment. The amplitudes Vth at which the transition between growth and decay
occurs in the experiment (triangles) and simulation (stars) as a function of K are
shown in Figure 13.9.

The features of these pulse trains will be exploited in the next section to
understand how a small perturbation can be used to switch from the linearly stable
quiescent state to broadband chaos.
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Figure 13.6 Two pulse trains generated by injecting pulses
with amplitudes of (a) 75.1 and (b) 78.7 mV into the feed-
back loop of the optoelectronic oscillator.
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13.5
Asymptotic Analysis

Our experimental observations show that, near m = 0, the system transitions from
steady-state to non-steady-state behavior (sometimes in the form of broadband
chaos) if seeded with a pulselike perturbation of sufficient amplitude. To better
understand this observation, we consider the phase portrait for Eqs. (13.8) and
(13.9) with m = 0. The time-delay term F[x(s − τ )] vanishes when the system is
in the quiescent state, leaving us with a two-dimensional ODE. Solving for the
nullclines of the system under these conditions gives

ẋ = 0 	⇒ y = −x, (13.16)

ẏ = 0 	⇒ x = 0. (13.17)

The intersection of the nullclines at the origin corresponds to the quiescent state of
the oscillator. As ε is small, motion is slow in the y-direction and trajectories that
start away from the stable fixed point are approximately horizontal until they reach
the y = −x nullcline.

Now consider what happens to the nullclines if x is perturbed with a short pulse
at time s = 0. The feedback term F[x(s − τ )] will become nonzero for a short time
in the vicinity of s = τ , because of the pulse from τ earlier. This will effectively shift
the ẋ = 0 nullcline to y = −x + Kcos2(d tanh x0) − K, where x0 is the amplitude
of the initial perturbation. Trajectories that start near the origin will be drawn
horizontally toward the shifting nullcline in an attempt to reach the new fixed
point at (x∗, y∗∗), as shown in Figure 13.7. For a sufficiently short initial pulse,
the trajectories will not have enough time to move appreciably in the y-direction

x

y

(x*, y**)

(x*, y*)Pulse trajectory

Figure 13.7 The nullclines with and without
the presence of a pulse. The ẏ = 0 null-
cline remains unchanged under the influ-
ence of a pulse, but the ẋ = 0 nullcline at
y = −x (solid line) is shifted to y = −x − y∗∗

(dashed line) when the pulse reaches its
maximum amplitude. Trajectories originating
near (x∗, y∗) approximately follow the shift-
ing nullcline, but are unable to reach (x∗, y∗∗)
since motion parallel to the y-axis is slow.
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before the nullcline shifts back. While the motion in the y-direction is negligible,
the out-and-back motion in the x-direction approximately reproduces the original
pulse, but with a possibly different amplitude. As shown in Figure 13.7, this pulse
will be in the negative x-direction, which corresponds to the positive V -direction,
regardless of the direction of the initial pulse. The pulse regeneration will continue
as described with each τ as long as y does not grow appreciably.

The phase-portrait analysis presented above explains how the system operating
near m = 0 can produce equally spaced pulses with negative amplitudes in x
(positive in V) if first seeded with a pulse. The discrete nature of the trajectories in
time serves as motivation to investigate a one-dimensional map of the form

xn+1 = F(xn) (13.18)

where xn corresponds to the amplitude of a pulse at time nτ , F is the nonlinear
feedback term defined in Eq. (13.10), and the slowly changing variable y has been
neglected. One should keep in mind, however, that the map given by Eq. (13.18)
only gives approximate predictions of the dynamics of the physical system, as
reducing the DDE to a map neglects all effects of the bandpass filter.

For m = 0, Eq. (13.18) can have either one or three fixed points, depending on
the value of K. The numerical solutions for the fixed points as a function of K are
shown in Figure 13.8. Using standard stability analysis we find that fixed point at
the origin x∗

s1 is always stable and corresponds to the quiescent state of the oscillator.
When the other two fixed points exist, they are both negative. However, the fixed
point with the smaller magnitude x∗

u is unstable, while the fixed point with the
greater magnitude x∗

s2 is stable. Thus, x∗
u forms a separatrix between the quiescent

state x∗
s1 and the pulsating state x∗

s2 and can be used to give an approximate value for
the critical amplitude of a pulse needed to generate a train of pulses with increasing
amplitudes. The agreement between x∗

u (when converted to physical units) and the
critical amplitude found in the experiment and simulation (as discussed in the
previous section) is shown in Figure 13.9.
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Note that, for m = 0, the minimum perturbation size predicted by the map
decreases asymptotically to zero as a function of K. Thus, if any noise is present,
there exists a sufficiently large K such that the system will leave the quiescent state
near m = 0.

For all values of m, one can also determine the threshold gain Kth required to
destabilize the quiescent state for a given noise intensity D =

√
2 < x2 >, where

< x2 > is the variance of x in the stochastic analog of Eqs. (13.8) and (13.9)
without feedback. First, consider determining the fixed points of the map by setting
xn+1 = xn. This gives

x∗ = K cos2[m + d tanh(x∗)] − K cos2(m), (13.19)

which can be rewritten as

x∗ = −K sin[2m + d tanh(x∗)] sin[d tanh(x∗)]. (13.20)

For the unstable fixed point x∗
u, we can use the following approximation

x∗
u ≈ −K sin(2m + dx∗

u)dx∗
u, (13.21)

because x∗
u � 1. Next, we set x∗

u equal to < x2 > to obtain

Kth ≈ 1

d sin d√
2
D − 2m

. (13.22)

As mentioned previously, the separatrix x∗
u and pulsating state x∗

s2 only exist in a
certain region of parameter space. For a given value of m, we can determine the
value of KC where the fixed points x∗

u and x∗
s2 coalesce, as shown in Figure 13.8.

Since x∗
s2 represents the pulsating state, the transient pulse trains that we observe

are only possible for K > KC. We determine KC numerically and find that there
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is a strong asymmetry about m = 0, as shown in Figure 13.10, indicating the
pulsing behavior is least likely around m = π/4. Also shown in Figure 13.10 are KH

(Hopf) and Kth (noise threshold) for one value of the noise intensity. For Kth < KH

(∼ −π/4 < m � 0.1), the quiescent state will be destabilized by a pulsing instability.
For KH < Kth, K ∼ KH, and small noise, the quiescent state will be destabilized by
the Hopf bifurcation. Thus, we predict that the quiescent state will be unstable for
K > min[KH, Kth]. We see that there is qualitative agreement between min[KH, Kth]
highlighted in Figure 13.10 with a thick line, and the high-noise experimental
measurements (Figure 13.4b).

13.6
Summary and Outlook

In summary, we have investigated the dynamics of an optoelectronic oscillator
operated in a regime where the quiescent state is linearly stable. We find exper-
imentally and numerically that, for sufficiently high feedback gain, the system
exhibits high-speed chaos with a featureless power spectrum extending beyond 8
GHz. By analyzing the experimental behavior when the system switches between
these two dynamical regimes, we construct a nonlinear discrete map and find
that we can predict the amplitude of a perturbation necessary to destabilize the
quiescent state.

The broadband, featureless chaos generated by this device may find use in
applications such as private chaos communication [15] or chaotic lidar [3], as its
noiselike characteristics could improve security. In addition, the switching effect
we report might also be useful for these types of applications.

Furthermore, coexisting states are common in time-delay systems, and the
existence of such states could influence these systems’ stability and performance.
For example, optoelectronic microwave oscillators [18], synchronized neuronal
networks [19], synthetic gene networks [20], and controlled chaotic systems [21, 22]
may have their noise sensitivity or stability adversely affected if a coexisting chaotic
state exists and internal or external perturbations to the system are large enough
that this state can be accessed.



References 331

Acknowledgments
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14
Synchronization of Chaotic Networks and Secure
Communication
Ido Kanter and Wolfgang Kinzel

14.1
Introduction

Chaos synchronization is a counterintuitive phenomenon. On one hand, a chaotic
system is unpredictable, since its trajectory is extremely sensitive to its initial state
[1]. On the other hand, two identical chaotic units that are coupled to each other
may synchronize to a common chaotic trajectory [2–4]. The system is still chaotic,
but after a transient time the two chaotic trajectories are locked to each other in
finite precision. This coupling may be unidirectional so that one sender is driving a
receiver and is then called master–slave configuration. It may also be bidirectional,
with both units influencing each other.

The phenomenon of chaos synchronization is attracting a lot of research. It is
a fundamental problem of nonlinear dynamics, which has many interdisciplinary
aspects. For example, synchronization plays an important role in biological systems
[5]. Hence, investigating the cooperative behavior of chaotic networks may help
to understand the functioning of biological networks [6]. Furthermore, chaotic
networks have the potential to be applied for novel secure communication systems
[7–12]. In this regard, synchronization between coupled chaotic lasers is vitally
important [13–15]. In fact, a private key secure communication over a distance of
120 km in a public fiber-optic communication network has recently been demon-
strated with chaotic semiconductor lasers in a master–slave configuration [16].

Note that in this scenario, the chaotic signal of the lasers is the carrier of the
information. Chaos may also be used to construct a secret message itself [17]. But
in this article we consider only chaotic signals that may be modulated to create a
secret message.

When a message is added in the master–slave configuration with a tiny amplitude
to the chaotic carrier of the sender Alice 1). it is not easy – if possible at all – to

1) In this report, we commonly refer to the
communicating units (sender) A and

(receiver) B as Alice and Bob and to the
eavesdropping unit E as Eve.

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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extract it from the transmitted laser beam unless its undisturbed chaotic signal is
known [10–12]. The undisturbed chaotic signal, however, can only be known from
a system that synchronizes with the sender, for example, the receiver Bob. Thus,
chaos synchronization opens the possibility for a private key secure communication
with high bit rates of the order of gigahertz.

However, this communication protocol is only secure if the two partners Alice
and Bob have agreed on identical private laser parameters. If an attacker Eve can
use identical equipment, she can synchronize as well, and extract the message
by subtracting her laser output from the transmitted signal. Therefore, public
cryptography is not possible with a unidirectional configuration. Is it possible to
generalize this concept to the realm of public channel communication?

In fact, it was suggested that dynamical systems with bidirectional couplings
[18, 19] may be able to realize a secret communication over a public channel [9].
When the two lasers of Alice and Bob are interacting, they may have an advantage
over an attacker Eve, who is only recording the signal [20].

Thus, applications for public cryptography are related to the following general
problems of nonlinear dynamics: For which conditions can networks of chaotic
units synchronize to a common chaotic trajectory? For which systems is it not
possible to synchronize an attacking unit, which is recording the exchanged signals
and which cannot interact with the network?

For typical applications in neurobiology as well as for lasers, the transmitted
signals have a time delay which is comparable or even much longer than the
internal time scales of the single units. Thus, we have to consider networks with
time-delayed couplings. Delay times may lead to new phenomena. Chaos can be
either generated or controlled with time-delayed feedback, neural oscillators change
their properties when they are coupled with delay [21], and the dynamics of the
system becomes infinite dimensional [22]. Thus, many recent studies consider the
cooperative properties of networks with time-delayed couplings [23].

In this article, we give an introduction and an overview of chaos synchronization
with emphasis on our recent work. For pedagogical reasons, we demonstrate
the main results with networks of chaotic Bernoulli units. But these results
are compared with experiments on semiconductor lasers and with numerical
simulations of Lang–Kobayashi equations, which are used to describe chaotic
semiconductor lasers [24, 25].

14.2
Unidirectional Coupling

Most of the phenomena that have been observed for synchronized chaotic lasers
have been described by a simple mathematical model: coupled Bernoulli maps
[26–28]. Hence, in this overview, we restrict the mathematics to this simple case.
But we keep in mind that many details of coupled lasers depicted by rate equations,
in particular the Lang–Kobayashi equations for semiconductor lasers [24, 25], are
the same as for the Bernoulli case. An isolated laser is not chaotic, chaos stems
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E

A B
Figure 14.1 Scheme of two unidirectional coupled units
A and B with an attacker E recording the transmitted
signal.

from time-delayed feedback of the laser itself or from its partners. In the simplest
case, a laser becomes chaotic by feeding its beam back to its resonator by an
external mirror. When this chaotic laser beam is inserted into a second laser it
may synchronize it. This unidirectional coupling, sketched in Figure 14.1, has the
corresponding equations for the Bernoulli maps with f (x) = (αx)mod1, which is
chaotic for α > 1.

at = (1 − ε) f (at−1) + εf (at−τ )

bt = (1 − ε) f (bt−1) + εf (at−τ ). (14.1)

The Bernoulli system allows an analytic calculation of the stability of the synchro-
nization manifold [26, 28–32]. Here, we find that

1) The unit A is chaotic for all parameters ε ∈ [0, 1] and
2) B synchronizes to A for (1 − ε)α < 1.

When B synchronizes to A, the isolated units A and B without coupling and
feedback are not chaotic. In this case, chaos is generated by the feedback, and
only a nonchaotic unit can be synchronized by a signal from its partner. Note
that although the signal is transmitted with a time-delayed signal with an arbitrary
large delay time τ , B synchronizes to A without any time shift, at = bt. This holds
because we have used identical delay times for feedback and coupling, otherwise
the trajectories would be synchronized with a time shift.

For shorter coupling delays, even anticipating chaos is possible: B can predict
the chaotic trajectory of A [33]. Chaos synchronization with unidirectional coupling
has been demonstrated in numerous experiments on semiconductor lasers and
electronic circuits [13].

14.3
Transmission of Information

How can Alice hide and transmit her secret message with synchronized laser
beams? In principle, there are two possibilities: (i) The message is modulating only
the transmitted signal (chaos masking or chaos pass filter) and (ii) the message is
modulating the sending unit as well as the transmitted signal (chaos modulation)
[10–12, 34]. These two principles may be demonstrated with our Bernoulli systems.
The first case corresponds to adding a message mt to the transmitted signal:

bt = (1 − ε) f (bt−1) + εf (at−τ + mt−τ ). (14.2)
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Hence, the unit of Bob is driven by the signal plus the message and, therefore,
Alice cannot completely synchronize with Bob. Surprisingly, Bob can recover the
message by subtracting the incoming signal from its own time-shifted trajectory:

m̃t = at + mt − bt. (14.3)

It seems that the dynamic of B filters out the message; therefore, the name chaos
pass filter was coined [35, 36]. The message is a perturbation that drives the unit B
away from the synchronization manifold.

It turns out that this mechanism is more complex than that simple explanation
[37]. The tiny perturbation mt is amplified by the chaotic dynamics. In fact, the
distribution of m̃t can have power-law tails, extremely large excursions away from
the synchronization manifold are possible. But if the message is encoded with bits,
mt = ±1 the bit error rate (BER), the probability of m̃tmt < 0 can be very small. In
fact, BERs of 10−7 are reported for the laser demonstration [16].

For the second scenario, chaos modulation, even error-free transmission is
possible. One example is feeding the message back to the sender:

at = (1 − ε) f (at) + εf (at−τ + mt−τ )

bt = (1 − ε) f (bt) + εf (at−τ + mt−τ ). (14.4)

It is immediately obvious that at = bt is still a solution of these equations; hence,
from Eq. (14.3) one finds m̃t = mt. Another possibility of chaos modulations is to
modulate one parameter of the sending unit, for example, the pump current of the
laser of Alice [13]. This may be easier than modulating the beam, but it generates
bit errors. In this case, one can even transmit signals with a chain of identical units
with arbitrary transmission delays, and extract the message just by the difference
of the trajectories of the last two units. However, the length of the chain is limited
by convective instabilities [38].

14.4
Bidirectional Coupling

As mentioned before, unidirectional configurations allow any attacking unit to syn-
chronize as well, if the attacker uses an identical dynamical unit. For bidirectional
coupling, however, this is not obvious; hence, in this section, we discuss chaos
synchronization with mutually interacting units.

For lasers, chaos can be generated by coupling two lasers via their time-delayed
laser beams. But they will not synchronize until one includes a self-feedback
or another coupling with certain constraints to the delay times [39, 40]. For the
inclusion of a self-feedback, a schemata can be seen in Figure 14.2, and the
corresponding Bernoulli system has the equations

at = (1 − ε) f (at−1) + εκ f (at−τ ) + ε(1 − κ) f (bt−τ )

bt = (1 − ε) f (bt−1) + εκ f (bt−τ ) + ε(1 − κ) f (at−τ ). (14.5)
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Figure 14.2 Scheme of two bidirectional coupled units
A and B with an attacker E recording both transmitted
signals.

For all parameters ε, κ ∈ [0, 1] the system is chaotic. Complete synchronization,
at = bt, is a solution of these equations, but its stability has to be calculated. The
analytic solution for large values of the delay time τ is shown in Figure 14.3. In
fact, the stability of synchronization is determined by the roots of a polynomial
of degree τ , and general symmetry considerations do not allow synchronization
without feedback, κ = 0. This is different for a triangular configuration of three
units or they can synchronize without feedback [28].

These results have been derived for a simple Bernoulli network. But, in fact,
complete synchronization for semiconductor lasers with feedback and mutual
coupling has been demonstrated experimentally [39]. The phase diagram is similar
to Figure 14.3. Of course, there are differences when compared to iterated maps: if
we are operating close to the threshold current, the laser will generate quasiperiodic
spike patterns, as can be seen in Figure 14.4, interrupted by sudden intensity
breaks, known as low frequency fluctuations. Almost complete synchronization of
the intensity has been observed on a picosecond time scale [41], corresponding to
10 ns delay time, and even optical phase synchronization on a femtosecond scale
has been measured [42].
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Figure 14.3 Phase diagram for Bernoulli units. Regions
II + III: synchronization of A and B for unidirectional cou-
pling, regions I + II: synchronization for bidirectional cou-
pling. From [26].
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Figure 14.4 A trace of 15 ns duration of the intensity of
one laser followed by plots of the same laser intensity after
a time τ , 2τ and 3τ with τ = 23.55 ns. The bottom panel
shows the intensity traces at time t + τ and at time t + 2τ ,
demonstrating the slowly decaying periodicity of the spiking
pattern. From [41].

For both systems, iterated Bernoulli maps and chaotic semiconductor lasers usu-
ally described by ordinary differential equations, it turns out that synchronization is
extremely sensitive to a careful adjustment of delay times. The previous results have
been derived with identical delay and coupling times. For the Bernoulli system,
an analytic calculation shows that already for the minimal possible difference of
one time step between delay and feedback time, synchronization is destroyed for
large delay times. Analogous to that, a careful adjustment of delay times of less
than the coherence time (few picoseconds), which means that less than a millime-
ter mismatch among distances in the laser experiments are necessary. However,
recently we have shown how to avoid this sensitivity of the coupling delay. If the
two partners use identical multiple feedback delays, the system synchronizes in
broad intervals of the coupling delay [31, 32].

Without feedback, a signal with a single delay time cannot synchronize two
nonlinear units to a common chaotic trajectory. However, when the signal is
transmitted with two delay times, chaos synchronization can be achieved. In this
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case, the ratio of the two delays τ1/τ2 = u/v has to be a ratio of odd relatively
prime integers [31, 32]. Experiments with semiconductor lasers have confirmed
this theoretical result [43].

Is there any difference between bi- and unidirectional coupling? Our simple
model shows (Figure 14.3) that the phase diagrams are different. Two identical
units with bidirectional coupling synchronize in regions I and II, whereas with a
unidirectional coupling they synchronize in regions II and III. Thus, with identical
units, Alice and Bob can select their parameters in region I, and Eve does not
synchronize her unit in the Bernoulli system as well as in the lasers. It was
shown, however, that Eve can always find parameters for her unit, which lead to
synchronization [27].

Nevertheless, in the following we suggest that secret communication is possible
for two interacting chaotic units. In the following section, we show that in the
scenario of Figure 14.3 the bit error of Alice and Bob is much smaller than the one
of Eve. Using methods from information theory, such a difference can be used for
secure communication. In Section 14.6, we suggest that private filters be used for
public cryptography with chaos synchronization.

14.5
Mutual Chaos Pass Filter

Random bit generators to be applied to cryptography have twofold requirements.
The random bits have to be generated at as high a speed as possible [44] while
maintaining high quality, as measured by the unpredictability of the bit string
produced. The second requirement is to find an effective key-exchange proto-
col over a public channel, such that the communicating parties will hold the
same random bit string that cannot be revealed by a powerful computational
eavesdropper [45].

Until recently, the only realistic way of generating random bit strings at high
data rates was to use deterministic algorithms to generate pseudorandom number
sequences, for they are only limited by computational hardware speed. However,
their unpredictability is limited by the very nature of their deterministic origin [45].
It is widely accepted that the core of any true random bit generator must be an
intrinsically nondeterministic physical process, such as measuring thermal noise
from a resistor, shot noise from a Zener diode or a vacuum tube [46, 47], and
measuring radioactive decay from a radioactive source [48]. Owing to low signal
levels, the generation rate from such sources is typically less than 100 Mb s−1

[44]. An intriguing possibility for a physical system for random bit generators is a
semiconductor laser in the presence of external feedback, whose output consists of
a large chaotic intensity fluctuations, characterized by pulses with a typical width of
100 ps [44, 49–51]. Indeed, great progress has been made recently in demonstrating
a generation rate from such lasers, from few gigabits per second [49, 50] toward
terabits per second [51, 52], where the randomness of the bit strings is verified by
standard statistical tests [53, 54].
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A secure key-exchange protocol between two parties over a public channel was
discovered in 1976 by Diffie and Hellman based on number theory, and paved
the road for modern cryptography [45]. Alternative physical mechanisms based on
quantum mechanics have been suggested more recently for a secure key-exchange
protocol, with the important and unique ability of the two communicating parties
to detect the presence of any third party trying to gain knowledge of the key [55–58].
The first layer of the quantum protocol is based on quantum ingredients such
as entangled pairs of photons and results in correlated keys for both partners.
The second, classical layer, consists of an error-correcting code, information
reconciliation, and privacy amplification. These result in identical keys for the
communicating pair, while leakage of information to an eavesdropper is eliminated.
Significantly, the quantum protocol relies on classical ingredients, such as random
bit generators, error-correcting code, and source coding, which govern the security
of the entire protocol.

The main focus of this section is to securely synchronize two random bit
generators with high bandwidth and fidelity over a public channel using a classical
mechanism – zero lag synchronization (ZLS) of two mutually coupled chaotic
lasers [52]. The ZLS mechanism is not sufficiently secure in its simple form to
act as a key-exchange protocol [20], and it serves only as an information carrier to
generate correlated random bit sequences. Identical random bit sequences can be
constructed from the correlated sequences using our proposed protocol, together
with information reconciliation and privacy amplification [57, 58]. Furthermore,
the presented mechanism allows the secure generation of a synchronized random
bit string amongst a small network of communicating parties. We have numerically
investigated the scenario of Figure 14.8, where two mutually coupled lasers, A and
B, are subject to both optical feedback and mutual coupling in a symmetric
configuration [52]. The optical self-feedback time delay, τf and the mutual coupling
time delay, τm, were both selected to be equal, τ = 10 ns in the examples below.
The self-feedback strength and the mutual coupling strength are denoted by κ

and σ , respectively. The injection current to the threshold current ratio is selected
to be 1.5, so that the lasers are operating in the coherence collapse regime [59].
The Lang–Kobayashi equations are known to be a good model for the intensity
dynamics of coupled semiconductor lasers [25], and the equations for the scenario
of Figure 14.8 are very similar to reference [39]. For each point in the phase space,
(κ , σ ), the cross correlation at zero time lag was measured over a window of 20 ns
and averaged over 1 μs. The formula that was used to calculate the cross correlation
for unit A and B is

Corr =
∑

i

[
(ai − a) ·

(
bi − b

)]
√∑

i (ai − a)2 ·
√∑

i

(
bi − b

)2
(14.6)

where a is the mean of the trajectory of unit A and b is the mean of the trajectory
of unit B. There are mainly two phases as depicted in Figure 14.5. For small κ + σ ,
A and B are not synchronized, whereas for larger values, ZLS emerges as the cross
correlation gradually increases toward one.
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Figure 14.5 Cross correlation for mutual
and unidirectional coupling taken from [52].
(a) Cross correlation at zero time lag be-
tween two mutually coupled semiconductor
lasers for a range of parameter values: κ ,

feedback strength, and, σ , coupling strength.
(b) Cross correlation at zero time lag be-
tween a third semiconductor laser coupled
unidirectionally to one of the parties using
identical κ and σ .

In the case that a third laser, C, is coupled unidirectionally to the transmitted
signal of laser A with the same delays and coupling strengths, it is clear that ZLS
of C with A and B is a possible solution of the chaotic dynamics, but its stability
is questionable. Figure 14.5b depicts the cross correlation at zero time lag between
C and either A or B when all lasers use the same parameters (κ , σ ). A comparison
between Figure 14.5a and 14.5b indicates that ZLS of mutually coupled chaotic
lasers is superior to the unidirectional coupling of laser C in a large fraction of
the phase space (κ , σ ) [9, 34]. Typically, laser C can achieve the same level of
synchronization as the mutually coupled lasers by amplifying the coupling signal,
while maintaining its total input κc + σc ∼ κ + σ . A central aspect of the proposed
cryptographic protocol is the advantage of ZLS of mutually coupled lasers over
unidirectionally coupled lasers with identical coupling and feedback strengths. In
what follows, we first describe the utilization of ZLS as a carrier synchronizing the
two random bit generators of the communicating parties and then we analyze the
security of the channel. In the first step, each partner encodes a random binary
sequence by modulating the chaotic intensity of its laser. The modulated intensity
is thus M2, where M = 1 corresponds to the transmission of bit 1, while M = M0

corresponds to the transmission of bit-1, where in simulations below M0 is set to
0.9 with a bandwidth of 1 Gb s−1. Our simulations indicate that the ZLS between
the communicating pair remains robust even in the presence of such independent
modulation by each of the parties. B, for instance, decodes the message transmitted
from A by dividing the intensity received from A with its own synchronized
laser output, prior to his modulation, <IAR>/<IB>, where the average, < >, is
over a predetermined duration of one bit transmission time. If this fraction is
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Figure 14.6 The bit error rate (BER) of the
attacker and the parties taken from [52].
(a) The BER of laser E for the setup in
Figure 14.8 as a function of (κ , σ ), when
the parties are operating with κ = 90 ns−1

and σ = 40 ns−1 (indicated by the arrow).
(b) The BER among the parties in the setup
of Figure 14.8 as a function of (κ , σ ). The
BER for each (κ , σ ) is averaged over 1 μs
and the modulation bandwidth is 1 Gb s−1.

larger than (1 + M2
0)/2, then the estimated received bit is 1, otherwise −1. The

encoding/decoding procedures are implemented simultaneously at both lasers,
and are known as a mutual chaos pass filter mechanism [34]. The average BER as
a function of (κ , σ ) in Figure 14.6b.

14.5.1
Protocol

Parties A and B encode different random bit sequences; hence, the decoded bits are
uncorrelated and independent of BER level. An identical random binary sequence
is obtained using the following protocol: (i) The two partners start with an identical
public random binary sequence of length L, SA = SB = S. (ii) A compares his
estimated received bit at time interval m, RA(m), to his random transmitted bit
at the same time interval, TA(m). If RA(m) = TA(m), SA(m) is set equal to RA(m),
otherwise SA(m) remains unchanged. Similarly, in the event RB(m) = TB(m), SB(m)
is set equal to RB(m). (iii) At the end of the mutual chaos pass filter procedure,
the average fraction of identical bits between SA and SB is given by 1 − p + 0.5p2,
where p stands for the BER of the mutual chaos pass filter procedure and is
calculated using symbolic mathematics [52]. The meaning of p = 0 is that A and B
acted identically on the initial vectors S and PAB = 1, whereas for p = 1 only when
the partners send different bits, S is altered differently by the two partners, hence
PAB = 0.5. For simplicity of discussion, we assume statistically independent errors
in the decoding procedure of A and B. However, it is expected that both decoders
are correlated, since in the event the two lasers are temporally desynchronized
the probability for an error bit for both of them increases in comparison to time
slots of enhanced synchronization, as was indeed observed in simulations and is
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analyzed in [52]. The two partners now possess correlated bit sequences. Identical
random bit sequences can be constructed from the correlated sequences using our
proposed protocol together with information reconciliation procedure, a form of
error-correcting code, as for protocols of quantum cryptography [60]. At the end of
this procedure, the two partners hold identical random bit sequences. Inevitably,
leakage of information occurs during the information reconciliation procedure
and is eliminated by a privacy amplification procedure, which is also utilized
in quantum cryptography for similar reasons [55–57]. The identical random bit
sequences can serve as a common key generated over a public channel. The main
question is whether a passive, unidirectionally coupled attacker, C, is capable of
deducing the key, when all details of the protocol are publicly known.

Figure 14.6 indicates that it is possible to select sets of parameters (κ , σ ) such
that the ZLS of the parties, A and B, is superior to the ZLS of the attacker, C.
For instance, for κ = 90 ns−1 and σ = 40 ns−1, the cross correlation at zero time
lag between the parties is much higher, ∼0.94, than the correlation between the
attacker and the parties ∼0.5. An attacker using the same set of parameters as A
and B would obtain a very high BER in his chaos pass filter mechanism, q ∼ 0.4
in our simulations, in comparison to p ∼ 0.07 for A and B. In order to minimize
his BER, the attacker can amplify σC while decreasing κC so that κC + σC ∼ κ + σ .
Figure 14.6 indicates that the minimum BER for the attacker, q ∼ 0.15, is obtained
for κ = 40 ns−1, σC = 90 ns−1, while the parties are operating with κ = 90 ns−1,
σ = 40 ns−1. Although this is a much lower BER then E would obtain without
the use of amplification, it remains more than twice as high as the BER of
A and B.

The mutual chaos pass filter procedure is based on the synchronization of
lasers A and B on the unmodulated portion of the signal shared between them.
The modulated part of the shared signal can be considered as ‘‘noise’’ for the
synchronization process. The noise-to-signal ratio for A and B is given by

σM2

I(σ + κ)
(14.7)

and this is larger for the attacker

σcM2

I(σC + κC)
(14.8)

since σC > σ , and as a result q > p. However, higher BER for C does not necessarily
indicate that the fraction of identical bits between SC and SA is reduced in
comparison to the fraction of identical bits between SA and SB. One can show,
using symbolic mathematics [52], that the average fraction of identical bits between
SC and SA is given by

PAB = 1 − 0.5p − q(1 − 1.5p) + q2(0.5 − p). (14.9)

The regions where PAC < PAB are indicated by the black and gray colored region
in Figure 14.7a. Note that for p = q and also for a limited region where p < q, one
finds PAC < PAB.
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Figure 14.7 Secure regions for two and
three synchronized random bit generators
[52]. (a) Two mutually coupled lasers as in
schematic Figure 14.8. (b) Three mutually
coupled lasers as in reference [52]. The BER
of the mutual chaos pass filter procedure
between a pair of parties, p, and between
a party and the attacker, q, where we as-
sume statistically uncorrelated decoded bits

by the parties and by the attacker. The col-
ored regions (colored in either black or gray)
indicate a necessary condition for the fail-
ure of an attacker before the reconciliation
procedure, PAC < PAB. The region where an
attacker cannot succeed in recovering the
random bits sequence of the parties, even
when using the leakage of information of the
reconciliation procedure, is indicated in gray.

A reconciliation procedure sets PAB = 1, resulting in identical random bit
sequences for A and B. The leakage of information in the reconciliation procedure
for the case PAC < PAB, can also be expected to be usable for enhancing PAC, but
it cannot be boosted to one. The exact bound for when A and B can be considered
secure from attack by C is given by

I(SA, SB) > I(SC, SA) + I(SC, SB|SA) (14.10)

where I(SC, SB) and I(SC, SB|SA) stand for the mutual information and the condi-
tional mutual information, respectively, and SA, SB and SC stand for the binary
sequences before the reconciliation procedure. The above equation states that in
case the minimum required exchange of information for the reconciliation proce-
dure, 1 − I(SA, SB), is less than the total missing information C possesses about SA

and SB, 1 − I(SC, SA) − I(SC, SB|SA), the attacker fails to recover the random bits
sequence. This condition as a function of p and q is depicted by the gray region
of Figure 14.7a, where the details of symbolic mathematics calculation are given
in [52]. Figure 14.7b depicts a similar scenario as Figure 14.7a but for the case of
three mutually coupled lasers as discussed in details in [52]. The above-mentioned
example (p = 0.07, q = 0.15) lies in the gray region of Figure 14.7a and thus
indicates that a secure synchronization of two random bit generators over a public
channel is achieved.
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14.6
Private Filters

Let us repeat the initial problem related to public cryptography: Alice and Bob
want to synchronize their dynamical systems to a common chaotic trajectory. Eve
has as much knowledge about Bob’s systems as Alice has and vice versa. Eve can
record and manipulate the transmitted signals between Alice and Bob, but she
cannot influence their dynamics. How can Alice and Bob ensure that Eve does not
synchronize as well?

For this problem, we focus on the chaos pass filter and not on chaos modulation.
It turns out that we can add a new mechanism to the configuration of the previous
section to not only raise the BER of Eve but also to prevent her from synchronization:
secret commutative filters [20, 27] as can be seen in Figure 14.8. Both Alice and Bob
transmit their signals via a private filter, which is not known to their partner. Since
these filters commute, both receive an identical signal if they are synchronized. Eve
only knows the two transmitted signals after passing through one filter and thus
cannot synchronize as a hardware attacker.

Let us specify this principle for the Bernoulli systems. The dynamical equations
of Alice and Bob are

at = (1 − ε) f (at−1) + εκ f (at−τ ) + ε(1 − κ) f [FA(FB(bt))]

bt = (1 − ε) f (bt−1) + εκ f (bt−τ ) + ε(1 − κ) f [FB(FA(at))]. (14.11)

FB(bt) and FA(at) are the signals transmitted from Alice and Bob, respectively. They
consist of the variables that are filtered with private kernels KA

r and KB
r :

FA(at) =
∑

r
KA

r at−τ

FB(bt) =
∑

r
KB

r bt−τ . (14.12)

If at = bt, then the two driving signals FA(FB(bt)) and FB(FA(at)) are identical, since
convolutions commute. In fact, for randomly chosen filter parameters, Alice and
Bob can still synchronize the units. But Eve, as a hardware attacker, receives only
FA(at) and FB(bt); thus, she cannot synchronize her unit. Any hardware attack
fails.

We now analyze the situation with an idealized software attacker, which can
record the signal with infinite precision. In principle, when enough information
is transmitted, it may be possible to calculate the private filters KA

r and KB
r

for r = 1, . . . , N with N being the number of filter parameters. This is due to
the counting argument as, with each time step, the attacker gets two additional

Unit
A

Unit
BFilter A Filter B

Figure 14.8 Scheme of two bidirectional coupled units A
and B, each with a private commutative filter. From [27].
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equations for FA(at)FB(at) and only one additional unknown new variable at. To
avoid this, an additional protocol has been suggested:

1) When the number of time steps is about the number of unknowns at = bt, KA
r ,

KB
r , the transmission is interrupted, and we have a period of silence and Alice

and Bob select new filter parameters.
2) The transmitted signals as well as the filter parameters are discretized to

integers.
3) A nonlinear term of the past signal is added to the transmitted signal; its effect

vanishes as the partners are synchronized.

The first point avoids an exact calculation of the filter parameters. The second
point maps the problem to the solution of equations with integers (Diophantine
problems). These problems belong to the class of NP problems; hence, in principle
it should be impossible to solve these equations with a number of calculations,
which increase with a power of N, the number of filter parameters, only.

14.7
Networks

In the previous sections we have considered chaos synchronization for two inter-
acting chaotic units, for example, two semiconductor lasers interacting by their
mutual laser beams with a long transmission time. Now we want to extend this
configuration to a chaotic network of nonlinear units. In fact, secure communi-
cation in networks of users is a challenging problem in information theory and
applications. Of course, it is possible to couple these users pairwise. But collective
chaos synchronization of networks may lead to new communication protocols, and,
in addition, understanding the cooperative behavior of interacting nonlinear units
may give some insight into the functioning of neuronal networks.

As shown before, ZLS is a necessary condition for secure communication
over public channels. Therefore, we want to discuss ZLS in general networks of
identical nonlinear units interacting by a function of their time-delayed variables.
For simplicity, we consider the simple model of a network of N Bernoulli units
with variables xi

t, which follow the equations

xi
t = (1 − ε) f (xi

t−1) + ε
∑

j �=i
Gij f (xj

t−τ ). (14.13)

The row sum of the coupling matrix is unity,
∑

jGi,j = 1; thus, the synchronized
trajectory xi

t = st is a solution of these equations:

st = (1 − ε)f (st−1) + εf (st−τ ). (14.14)

To analyze the stability of the synchronization manifold, we use the power-
ful method of the master stability function [61], which has been extended to
time-delayed systems [29, 31, 62–64]. Linearizing Eq. (14.13) in the vicinity of
the synchronization manifold yields a system of N perturbation modes, whose
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amplitudes ξk,t follow the equations

ξk,t = (1 − ε)f ′(st−1)ξk,t−1 + εγkf ′(st−τ )ξk,t−τ . (14.15)

γk are the eigenvalues of the coupling matrix G. Thus, a system of N coupled
equations reduces to a one-dimension equation with an additional variable γ . For
γ = 1, this equation determines the stability inside the synchronization manifold.
All other modes of perturbation determine the stability perpendicular to the
manifold.

In the case of Bernoulli units, one has constant coefficients of the linear
Eq. (14.15), f ′(st) = α > 1. Therefore, with ξt = zt, this equation reduces to deter-
mining the roots of the polynomial

zτ = (1 − ε)αzτ−1 + εαγk. (14.16)

If one root of this polynomial lies outside the unit circle, then the corresponding
perturbation mode ξk,t is unstable. Thus, if the matrix G of a network has an
eigenvalue γk (except γ0 = 1) for which Eq. (14.16) is unstable, then the network
cannot synchronize to a common chaotic trajectory.

In the limit of large delay times, that is, when τ is much larger than all internal
time scales of the system, the root of the polynomial and the corresponding
conditional Lyapunov exponents can be calculated analytically. We find a simple
relation that determines the stability of the synchronization manifold:

|γ1| < exp(−τλmax). (14.17)

γ1 is the eigenvalue of G with the second largest modulus and λmax is the largest
Lyapunov exponent of the network, which, in our case, is identical to the one of the
synchronization manifold (Eq. (14.14)).

This equation is exact for Bernoulli networks, but numerical simulations of
several networks of semiconductor lasers have shown that this relation holds for
this case, as well [30]. Thus, the eigenvalue gap 1 − |γ1| is responsible for chaos
synchronization of general networks.

Equation (14.17) has interesting consequences. For example, for a pair of
units without self-feedback and for a general bipartite network, one has γ1 = −1.
Therefore, these networks cannot be synchronized to a chaotic trajectory. For a
triangle, however, one has γ1 = −1/2; hence, a triangle can be synchronized if
chaos is sufficiently weak. For an all-to-all network, the eigenvalue γ1 = −1/(N − 1)
decreases to zero with the size of the network. Hence, any chaotic network can be
synchronized for sufficiently large-size N.

Eq. (14.17) is also true in the limit of τ → ∞. If the single isolated unit is
chaotic, the Lyapunov exponent λmax is of the order of 1 and the network cannot
synchronize [62]. However, if the unit is not chaotic, then λmax is of the order
of 1/τ and the network can synchronize to a common chaotic trajectory. In this
case, chaos is generated by the time-delayed couplings, as in the case of lasers that
become chaotic either by self-feedback or by interacting with other lasers.

A challenging test of Eq. (14.17) are networks with directed couplings without
self-feedback. In this case, the eigenvalue γ1 usually is a complex number and
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according to Eq. (14.17) only the modulus determines synchronization. In fact,
numerical simulations of the laser rate equations have shown that the master
stability function depends on the modulo of γ , only [64].

As a consequence of Eq. (14.17), any ring of units cannot be synchronized since
one has γ1 = 1. But a general oriented graph can have an eigenvalue gap [29,
30]. For example, a square with a diagonal shown in Figure 14.9 has a complex
eigenvalue, which is largest for ρ = 5/8 with γ1 = √

3/2. ρ and 1 − ρ are the input
weights in the network shown in Figure 14.9. According to Eq. (14.17), this network
can synchronize without time shift when λmaxτ < 0.15.

Figure 14.10 shows λmaxτ for semiconductor lasers obtained from numerical
simulations of the corresponding rate equations [30]. Combing this result of a
single laser with the eigenvalues gap of the network of Figure 14.9, we find ZLS
[29] and the phase diagram of Figure 14.11, which is in agreement with the one
obtained from simulating the complete network (see the cross correlations shown
in Figure 14.11.

The analysis with the polynomial Eq. (14.16) can be extended to networks with
multiple time delays [29]. The simplest system is a pair of units coupled with two

1
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r

Figure 14.9 Directed ring with a diagonal of coupling
strength ρ.
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Figure 14.10 Maximal Lyapunov exponent for a single semi-
conductor laser with one self-feedback as a function of its
self-feedback strength from [30], representing the synchro-
nization manifold of an arbitrary network. The parameters of
the numerical simulations of the laser rate equations can be
found in [30].
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Figure 14.11 Cross correlations of semiconductor lasers of
the network of Figure 14.9. The white line shows the transi-
tion to chaos synchronization predicted by Eq. (14.17) and
Figure 14.10.

delay times τ1 and τ2. Note that for a single delay, time synchronization is not
possible. However, multiple delay times can enforce synchronization [29, 31, 32].
The symmetries of the corresponding polynomial exclude synchronization when
the ratio τ2/τ1 = u/v is a ratio of two odd integers u and v, which are relatively
prime [31, 32, 43]. For other ratios synchronization is possible. For τ2 = 2τ1,
the parameter region for synchronization is largest. In fact, for this case, chaos
synchronization has been demonstrated with experiments on semiconductor lasers
[43]. For odd ratios, the cross correlation is high, whereas for other ratios of small
integers a high cross correlation has been measured.

For general networks with multiple delay times, an analytic solution has not
been found, yet. However, in this case, a self-consistent mixing argument has
been given, which determines the kind of synchronization that is possible in the
limit of weak chaos [29]. The argument is based on mixing information: each
unit has a chaotic trajectory that is transmitted to its connected partners. This
information is mixed with the signals from the other units after some time. When
all the information from all units are finally spread over the complete network,
this network can synchronize. When only some subnets have mixed information
form the nodes of the subnet, the system shows cluster synchronization. It turns out
that the greatest common divisor (GCD) of all loop lengths of the graph determines
the kind of synchronization. If GCD = 1, complete synchronization occurs in the
limit of weak chaos. If GCD = m, then the network synchronizes to m clusters or
sublattices.
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14.8
Outlook

Key-exchange protocols based on number theory are fundamentally limited to only
two users. The key-exchange protocol presented here, however, can be generalized
to a secure synchronization of random bit generators among a small network of
three mutually coupled lasers [52], although we assume that an advanced attacker
may be able to amplify the transmitted signal without introducing additional noise.
For synchronizing more than three random bit generators, it is expected that the
secure region in the BER of the mutual chaos pass filter procedure (p,q) will become
smaller, since the superior information of a party (knowledge of its transmitted
bit) relative to the attacker is reduced. Sufficiently low BER values, p, are within
the secure region for any number of synchronized random bit generators, and
the remaining question is whether sufficiently low p values can be achieved. It is
experimentally expected that by implementing a high pass filter on the mutually
transmitted signals, p can be significantly reduced to the order of 10−7, as was
observed in a unidirectional configuration and modulation bandwidth of 1Gb s−1.
Consequently, it is expected that the presented secure synchronization of two
random bit generators can be extended to a larger network of communicating
chaotic lasers. An important property of the proposed key-exchange protocol is
to detect the presence of an active attacker trying to interfere with the mutual
transmitted signals in order to enhance his ZLS or to prevent the parties from
achieving an identical key. A possible solution for the parties is to communicate
part of their encoded and estimated decoded bits over a public channel, where each
encoded/decoded configuration has a given probability which is a function of p.
An active attacker cannot imitate these probabilities, since its knowledge of the
transmitted information is inferior in comparison to the parties. This additional
feature of the key-exchange protocol, based on synchronization of chaotic lasers,
is similar to known features of the quantum key-exchange protocol and certainly
deserves further research.
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15
Desultory Dynamics in Diode-Lasers: Drift, Diffusion, and
Delay†

K. Alan Shore

Eckehard Schoell and the present author shared a PhD supervisor: Professor
Peter Landsberg. However, our studies were coincident in neither space nor time.
Eckehard Schoell worked with Peter Landsberg at Southampton University, while
the present author did so at the then University College, Cardiff – now Cardiff Uni-
versity. Our trajectories intersected when Eckehard Schoell organized a meeting to
celebrate the sixtieth birthday of Peter Landsberg at Gregynog Hall in Wales in 1982.

Spatial linkages between Peter Landsberg and Eckehard Schoell were enhanced
when Professor Schoell moved to Berlin – Peter Landsberg’s birth place. Peter
Landsberg left us in February 2010 at the age of 87 – having continued publishing
into his eighty-fourth year. It remains to be seen whether any of his students can
emulate that longevity.

15.1
Introduction

The title of this chapter is chosen to convey a technical concept as well as a personal
sentiment. Dealing with the latter first, this author notes that his research career has
not been meticulously planned but has rather been subject to a series of unexpected
stimuli, which has resulted in the execution of a Brownian-like motion through
a number of research areas related to semiconductor optoelectronic devices. In
this sense, the author’s research career is more desultory than deterministic and
perhaps a little chaotic.

Turning to the technical concept, which is intended to be encapsulated in the title,
it is seen that a number of physical mechanisms, and notably electron diffusion and
drift and optical feedback time delays, can have significant impact on the dynamics
of semiconductor lasers and thereby often engendering nonlinear behaviors and
definitely including chaotic dynamics. These technical themes are developed in
this chapter in a manner which interleaves somewhat with the personal dimension
treated above.

† A previous 60 years.

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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In Section 15.1, the author recalls very early work on electron diffusion in devices
that were then called the injection lasers and are now generally termed semiconductor
lasers or diode lasers. This work gives a linkage to previous work by Landsberg as
well as to an earlier resident of Berlin. Effects of electron diffusion resurfaced later
when attention began to be paid to transverse mode instabilities in semiconductor
lasers including laser arrays.

In Section 15.2, attention is given to electron drift dynamics in intersubband
lasers. This theoretical work predates the spectacular experimental work performed
by Capasso, Faist, and coworkers in the invention of the quantum cascade laser.
The work owes its inclusion in this chapter to the fact that it exemplifies the
serendipitous nature of the present author’s research and also provides an organic
link to the subject of this birthday tributary volume. The relevant work was
stimulated by attending a presentation by a diploma student of Eckehard Schoell at
the Technical University of Berlin. That work focused carrier transport in quantum
well structures, but discussions with Schoell and hard work by Wai MunYee
resulted in the joint publication on prospects for intersubband optical gain. That
paper laid the foundation for subsequent work, which appears to be the first work
on the modulation properties of intersubband lasers. In turn, that work resulted in
collaborative work with Pesquera et al. in Santander, Spain.

The Santander connection provides a natural bridge to the work in Section 15.3
in which the role of carrier diffusion and stimulated emission in determining the
modal properties of vertical cavity surface emitting lasers (VCSELs) is described.
This work on the spatiotemporal dynamics of VCSELs had been initiated during
an extended stay at Bath University by Angel Valle from Santander. A particular
aspect of VCSEL modal behavior, which has retained its currency, is the selection
of polarization modes.

Section 15.4, giving particular emphasis to experimental work, offers a discussion
on how delayed optical feedback can be used to impact the dynamics of VCSELs and
also to influence modal selection. Attention is also given to the impact of optical
injection on VCSEL behavior. Both delayed optical feedback and optical injection
may cause semiconductor lasers, including VCSELs, to exhibit optical chaos.

Section 15.5 treats optical chaos generation, optical chaos synchronization,
and optical chaos communications using semiconductor lasers, with particular
exemplars being taken from experimental work on VCSELs. Optical chaos com-
munications provide a rich context in which to explore the nonlinear dynamics
of semiconductor lasers. One particular feature of chaos synchronization for com-
munications is the impact of the time of flight arising to the physical separation
between the synchronized chaotic lasers, which function as transmitter and receiver
in chaos communications. The expectation is that a time delay associated with the
time of flight will arise in chaos synchronization.

Section 15.6 treats an early experiment that identified conditions under which
the time of flight delay could be eliminated. Inherent in this work is the use of
lasers that are rendered chaotic by delayed optical feedback. Knowledge of that
feedback delay time is important for reconstructing the laser dynamics and hence
may affect the security of chaos communications.
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The final technical section of the chapter treats some practical aspects of chaos
communications schemes. First, it is shown that conditions for high-quality chaos
communications do not necessarily coincide with those that provide the optimum
condition for message transmission and extraction. The second topic concerns the
security of such systems, pointing out when the presence of an eavesdropper can
be detected. A brief conclusion terminates the chapter.

15.2
Carrier Diffusion in Diode Lasers

This author began his association with the semiconductor laser in 1972 when the
semiconductor laser was 10 years of age, just 2 years younger than its sibling
the ruby laser, and had become a device that could be operated fairly reliably at
room temperature. Tracing the early development of the semiconductor laser is
enabled by the special issues of the IEEE Journal of Quantum Electronics associated
with the IEEE Semiconductor Laser Conference. That conference was first held
in Las Vegas, Nevada, between 29 November 1967 and 1 December 1967, and
J.I. Pankove served as the first Guest Editor of the relevant special issue published
in April 1968. In his editorial, Pankove referred to the challenge of achieving
continuous-wave room temperature operation of semiconductor lasers. Even when
the second meeting of the series was held in Mexico City in December 1969,
that challenge had not been met, although the journal guest editor J.E. Ripper in
June 1970 was cautiously optimistic that the introduction of double heterostructure
lasers ‘‘revived hope of soon achieving continuous operation at room temperature.’’
However, by the time delegates convened in Boston in May 1972 for the third IEEE
Semiconductor Laser Conference, the IEEE Journal of Quantum Electronics Guest
Editor, L.A. D’Asaro was able to indicate in February 1973 that ‘‘continuous
operation of junction lasers at room temperature has become a widely achieved
fact.’’ That performance capability owed a great deal to the ingenuity and persistence
of Professor Zhores Alferov and Professor Herbert Kroemer who championed the
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Figure 15.1 Double heterostructure proposed by Kroemer.
(Reprinted Figure 15.8 from [1]. Copyright 2001 by the Amer-
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use of semiconductor heterostructure technology (Figure 15.1) in semiconductor
laser design. Appropriate recognition of their contributions came with the 2000
Nobel Prize for Physics being awarded to them.

T.L. Paoli acted as Guest Editor for the July 1975 IEEE Journal of Quantum
Electronics associated with the fourth IEEE Semiconductor Laser Conference, which
was held in Atlanta, Georgia in November 1974 (the first such meeting attended
by the present author). In his editorial, Paoli was able to highlight another critical
issue in a rather wry manner. He remarked, ‘‘Although the reliability of junction
lasers remained a primary concern of most workers, the nervous fear that such
devices might be limited to relatively short CW lives was somewhat alleviated by the
informal report by Bell Laboratories of a continuous lifetime in excess of 14 000 h
for at least one junction laser.’’ (This author’s emphasis.)

It was clear then, and several subsequent decades of research have confirmed, that
the development of semiconductor lasers was far from complete when the present
author joined the Department of Applied Mathematics and Mathematical Physics
at University College, Cardiff to begin work with Professor Peter Landsberg and
Dr. Mike Adams toward a PhD concerning the ‘‘Double-Hetero-structure Injection
Laser.’’ The focus of attention was the transport of electrons and holes across
the laser heterostructure and thence to determine in a self-consistent manner
the optical wave-guiding properties of the laser. In studying these effects, both
carrier drift and carrier diffusion were taken into account. Some care was needed
in defining the diffusion coefficient, D, and electron mobility, μ, for use in the
simulations. It is widely known that these parameters are interlinked by the Einstein
relation D/μ = kT/e. Early work on rectifier theory [2] had shown that such a simple
relation is not always applicable but should be replaced by a generalized Einstein
relation of the form:

D/μ = αkT/e (15.1)

where α = F1/2(η)/F−1/2(η); the F’s are Fermi integrals and η = Ef /kT .
Then, in the case of the carrier degeneracy, which obtains under lasing conditions,

the ratio between the diffusion coefficient and mobility depends on the carrier
density or equivalently, the Fermi level, Ef.

Measurements of the current voltage (I–V) characteristics of double heterostruc-
ture lasers had shown that they took the form I = I0 exp(eV/αkT) with α > 2. It was
shown in [3] that an association could be made between the parameter α included
in Eq. (15.1) and the nonideality factor of the I–V characteristics. This use of an α

parameter was later superseded by a much wider usage in relation to the line-width
enhancement and antiguiding properties of semiconductor lasers. On the other
hand, it appears that the carrier degeneracy effects at the heart of [3] continue to
have some currency in work on quantum well semiconductor lasers [4].

As the design of semiconductor laser continued to evolve, issues of carrier
transport and specifically of carrier diffusion gained increasing attention in relation
to the stability of transverse optical modes [5]. Also at this time, wider interest
was also beginning to be shown in understanding general optical instabilities
including optical bistability and chaos. It is, of course, now widely appreciated that
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such phenomena are ubiquitous in physical and nonphysical systems, but optical
systems provided many early practical demonstrations of such effects. From the
perspective of semiconductor laser development, such phenomena are generally
unwelcome. On the other hand, from a scientific viewpoint, optical systems,
and specifically semiconductor lasers, provide a convenient laboratory in which to
explore such phenomena. Those viewpoints can be reconciled when studies of such
nonlinear optical phenomena open up new functionality by means of device designs
for controlling instabilities [6]. Both perspectives were adopted in work, which first
examined optical bistability and optical instability in semiconductor lasers [7–13].
Specifically, twin-stripe lasers were conceived as a means for controlling the
instabilities and thereby accessing, for example, beam-steering capabilities [14].
In the process, it was found useful to utilize methodologies and terminologies
from nonlinear dynamics – perhaps the first occasion when such explicit use was
made of such approaches in the context of semiconductor lasers [15–17]. The
significance of such phenomena was fully recognized when attention was directed
at the development of high-power semiconductor laser arrays [18]. The prediction of
the onset of chaos in such devices [19] underlined the need to understand in detail
the underlying physics of such devices and specifically the nonlinear dynamical
properties of these lasers.

Having first been of interest for the determination of heterostructure carrier
transport and then becoming key to understanding optical mode instabilities
in semiconductor lasers and laser arrays, carrier diffusion played yet another
prominent role when the modal properties of VCSELs came under scrutiny. Such
aspects are considered in Section 15.3.

As progress sometimes requires retracing previous paths, it is noted that carrier
transport across heterojunctions has returned to prominence, particularly in treat-
ing the behavior of quantum well laser structures. A particular example of such
transport phenomena is treated in the next section.

15.3
Intersubband Laser Dynamics

For the first 20 years or so of semiconductor laser usage, the semiconductor
material optical bandgap was seen as the sole determinant of the lasing
wavelength. Thus, in order to develop semiconductor lasers that could offer a
span of operating wavelengths – mainly from the visible into the near-infrared –
attention was given to a variety of ternary and quaternary heterostructure materials
whose bandgap corresponded to the target emission wavelength. That ‘‘bandgap
slavery’’ was relaxed, if not totally abolished, with the development of the so-called
low-dimensional semiconductors and specifically, quantum well and quantum
dot materials. Using such materials, lasing transitions were no longer principally
determined by quasi-continuous energy states in the conduction and valence bands
of traditional or ‘‘bulk’’ semiconductors. Rather, such transitions occurred between
quantized electron and hole energy levels. Those levels were in turn determined
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largely by the physical dimensions of the material layers used in the device
construction. Realization of low-dimensional structures placed considerable de-
mands on semiconductor growth technology, which rapidly and effectively met that
challenge.

As is discussed in more detail elsewhere in this volume [20], electron transport
in quantum well and quantum dot materials is a rich area for fundamental studies
and also has significant applications. Focusing on conduction band electrons for
definiteness, one may consider a number of mechanisms by which carriers are
transported across, for example, a multilayered structure formed in semiconductor
quantum well materials. Depending on the exact structure utilized, several con-
figurations of energy levels may arise, but here, attention is drawn to the case in
which a number of discrete energy levels appear in the conduction and valence
bands. Interest then is narrowed to the opportunities which emerge to build lasers
that utilize transitions between, for example, the discrete electron energy states in
the conduction band. It is noted for consistency that when one focuses attention
on transitions involving one species of charge carrier, for example, electrons, then
one cannot refer to the resultant emitter as being a diode laser – no use is made of
a p–n junction. It is hoped that the reader is prepared to allow the present author
some latitude to treat this topic despite the alliterative title of the chapter.

Typically, in as much as several quantized energy levels may exist in such a
structure, it is natural to consider whether an opportunity exists to achieve optical
gain via electron transitions between such intersubband energy levels. A positive
answer to that question was obtained in the joint work with Schoell [21]. It is
emphasized that such transitions are unipolar in nature, and hence the lasing
device is a semiconductor laser but not, as mentioned above, a diode laser.

A salient feature of such intersubband transitions is that the energy transition is
small relative to typical semiconductor laser bandgaps. Put another way, the laser
emission from such transitions is at a much longer wavelength than the typical
1 μm wavelength obtained from interband semiconductor lasers. Intersubband
lasers offer opportunities for producing compact laser sources with wavelengths
one or two orders of magnitude greater than those provided by conventional lasers
(Figure 15.2).

It took the Herculean efforts of Faist and coworkers, and notably Sivco and Cho,
to realize this concept in the form of the quantum cascade laser (QCL) [23]. A
crucial aspect of the device design was the use of a semiconductor superlattice. A
proposal for the use of such superlattices to achieve electromagnetic amplification
had been made within the very first decade of the history of semiconductor lasers
[24]. Further considerations of this device are offered elsewhere in this volume [25].

The practical realization of the quantum cascade laser, based on intersubband
transitions, has opened yet another new chapter in the development of semiconduc-
tor lasers. The QCL and its variants open the opportunity to provide a convenient
source of terahertz radiation with actual and prospective applications in medical
imaging, trace gas detection, and security screening. In the context of increased
attention being given to the need for scientific research to be ‘‘applicable’’’ it is
observed that such capabilities were probably not at the forefront of the minds of
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those who first explored the transport properties of electrons in semiconductors.
(Figure 15.2)

The model assembled in Berlin [21] was refined and utilized in subsequent
explorations of the modulation performance of intersubband lasers. Here, the
key parameter is the electron lifetime that in typical intersubband structures,
is of the order of 1 ps, about three orders of magnitude smaller than that for
typical interband transitions. The direct consequence is the expectation arising of
terahertz modulation bandwidths in intersubband lasers [22, 26, 27] (Figure 15.3).
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Here, carrier transport across the structures is of key importance [28, 29]. Such
dynamical properties are beginning to be exploited [30].

Intersubband transitions also offer opportunities for tailoring nonlinear optical
properties to enable, for example, third harmonic generation [31–35]. Cou-
pled quantum well structures offer further opportunities for studying transport
phenomena [36, 37].

15.4
Carrier Diffusion Effects in VCSELs

As signaled above, carrier diffusion effects regain importance when consideration
is given to the properties and behavior of VCSELs. Here, the principal consideration
is the interplay between the two-dimensional carrier density profile and the optical
modes of the laser cavity. Typically, VCSELs have a circular cross-section and
usually emit linearly polarized light. However, because of their circular symmetry
there is no a priori defined direction for that linear polarization. Consideration of
the diffusion of charged carriers in VCSELs reveals much about the basic physics of
mode selection. In this section, we consider three aspects of VCSEL performance
that are strongly impacted by diffusion effects. Sections 15.4.1 and 15.4.2 are
exclusively concerned with theoretical analysis of such effects. In Section 15.4.3,
attention is drawn to a nascent area of activity where again, carrier diffusion effects
have a significant role.

15.4.1
Transverse Mode Competition and Secondary Pulsations

Theoretical exploration of VCSEL dynamics requires a treatment of both carrier
diffusion and the interaction of the lasing mode with the gain profile. Early models
treating such aspects were reported in [38] and [39]. Here emphasis was given to
the competition between transverse modes a stand-alone VCSEL. The fundamental
transverse mode, having a maximum intensity at the center of the laser, is normally
excited close to the lasing threshold. This is because the mode profile is well
matched to the two-dimensional carrier profile derived from the current injection
into the VCSEL. As the laser drive current is increased, the optical power of the
lasing mode generally increases. In turn, this increases the stimulated emission,
which in turn preferentially enhances the carrier depletion in the regions where
the mode intensity is maximum, that is, at the center of the laser. This causes
spatial hole burning in the gain [39]. Depending on the rate of carrier diffusion,
such spatial hole burning can be ameliorated somewhat, but typically, the gain
profile exhibits a strong depletion. In this case, a higher order transverse mode
with an optical profile that matches the gain profile begins to lase. Further increase
in the drive current with concomitant changes in the gain profile can cause further
changes in the transverse mode structure.
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Carrier diffusion also can play an interesting role when the laser is switched off.
In this case, with a cessation of lasing, carrier diffusion is the main determinant of
the carrier profile. In appropriate circumstances, the restoration of the gain profile
can result in laser emission even after the laser is nominally switched off. Such
predicted secondary pulsations [40] have subsequently been observed.

One of the consequences of transverse mode switching is a change of the
far-field emission of the laser and specifically, a manifestation as a high-frequency
beam-steering behavior [41]. Transverse mode selection in VCSELs can be aided
by the use of optical feedback when the laser is operated in an external cavity
configuration [42]. Attention is also drawn to statistical effects that impact transverse
mode selection in laser turn-on [43].

15.4.2
VCSEL Polarization Selection

As is made clear in Section 15.4.1, modal selection in VCSELs is highly dependent
on the injected carrier profile. The carrier profile also contributes to the selection
of the linear polarization mode of VCSELs. Spatial hole burning has been shown
to impact polarization dynamics in VCSELs [44]. Nominally, circularly symmetric
VCSELs often exhibit a degree of asymmetry in material composition or structure,
which results in some birefringence that assists in polarization mode selection [45]
including in multi transverse-mode VCSELs [46]. Additional dimensions to the
polarization mode behavior arise in laser modulation [47] and when operated in
external cavities [48].

15.4.3
Nanospin VCSELs

In the foregoing discussion, the emphasis has been given to determination of
the direction of linear polarization in VCSELs. Consideration has also been given
to the opportunity to generate circularly polarized light from VCSELs. The basic
requirement in this case is that appropriate quantum mechanical transitions are
accessed. Such general requirements were highlighted in a seminal paper by San
Miguel et al. [49], which has been widely applied to the study of the polarization
dynamics of VCSELs. The model is often referred to as the SFM model, an acronym
which both reflects the authorship of the paper and the underlying physical
mechanism considered in the paper: the spin-flip mechanism.

Increasing attention has been given, in recent years, to the exploitation of electron
spin in a range of electronic devices, giving rise to a new discipline spin electronics
or spintronics.

In the case of semiconductor lasers, a particular attraction of using spin effects
is to access a potential 50% reduction of the laser threshold current [50]. It has
been shown that optically pumped VCSELs can generate circularly polarized
light emission [51], and electrically pumped LEDS and semiconductor lasers have
been developed to exploit spin effects [52–54]. The challenge is to deliver an
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electrical spin-injected semiconductor laser having operability at and above room
temperature.

Another thrust of activity, motivated by developments in nanotechnology, is to
miniaturize semiconductor lasers to provide the so-called nanolasers [55]. One
approach to semiconductor laser miniaturization is to utilize metal-clad structures.
In such structures, lasing can occur in optical modes, which are located at the
interface between the metal and the semiconductor dielectric, surface plasmon
modes [56]. Such structures are thus linked to the burgeoning area of research
activity known as plasmonics [57]. Metal-clad VCSELs are strong candidates to
provide electrically injected nanospin semiconductor lasers [58, 59]. In such devices,
the issue of diffusion of the electrically injected spin electrons can be expected to
play a significant role in device performance [60].

15.5
Delayed Feedback and Control of VCSEL Polarization

A motif of the present chapter is the persistence of certain underlying physical
effects such as carrier drift and carrier diffusion in determining the properties
of successive generations of semiconductor lasers. The exploration of optical
injection into lasers in general and semiconductor lasers in particular [61] is
consistent with that motif. The study of optical feedback effects in diode lasers
has perhaps a longer pedigree [62] than optical injection and is particularly
associated with a truly seminal publication [63] whose continued use over 30
years is noteworthy. A remarkable feature of the Lang–Kobayashi model [63] is
that appears to provide quite accurate predictions even outside the domain of its
precise validity. A relatively complete summary of the state of the art of optical
feedback effects in semiconductor lasers is available [64]. Other aspects of this
configuration are presented elsewhere in this volume [65, 66].

In this section, attention is directed at some of the impacts of optical injection and
optical feedback on the behavior of VCSELs. Exploration of these aspects continues
apace, and hence further insights in this behavior are anticipated. Experimentally
observed phenomena include bistability in various forms [67, 68], and theoretical
studies have highlighted pertinent dynamical properties [69].

Early theoretical studies of optical feedback effects on VCSELs considered the
noise properties of VCSELs subject to optical feedback [70, 71] including the effects
of multiple external cavity reflections [72] and strong coherent optical feedback [73].
Modeling activity was extended to include modal dynamics in modulated VCSELs
subject to optical feedback [74]. Complementary experimental work investigated
polarization-resolved noise properties of VCSELs subject to optical feedback [75].

The attention paid in [75] to the polarization aspect is of considerable significance
for practical applications of VCSELs. Often, VCSELs have circular apertures for
which the direction of the polarization of the lasing mode in VCSELs is generally
neither defined a priori nor fixed during laser operation. Near the lasing threshold,
VCSELs normally support one dominant linearly polarized fundamental transverse
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mode with a suppressed, nearly degenerate, orthogonally polarized fundamental
mode. When the laser bias current is increased, the polarization often switches
from its near-threshold direction to the orthogonal polarization. Such polarization
switching will impact the use of VCSELs in polarization-sensitive systems, and
hence effort has been expended to control polarization switching in VCSELs by a
careful design of VCSEL structure [76–78].

Despite their very high facet reflectivity and because of their very short cavity
lengths and large emitting area, VCSELs are very sensitive to the effects of optical
feedback. The response depends in particular on the polarization properties of
the reflected light and specifically on whether the optical feedback is polarization
preserving [79–83] or polarization selective [84–87]. An experimental comparison
of the effects of polarization-preserving and polarization-selective optical feedbacks
on polarization switching in VCSELs has been reported [88].

When the bias current is increased, the polarization often switches to orthogonal
polarization. Such polarization switching adds to the richness of VCSEL dynamics
[89–94]. Anticorrelation dynamics between the polarization states of VCSELs has
been reported in several articles [95–98]. There has also been some work on
the quantitative analysis of the cross correlation between the two orthogonal
polarizations near threshold in free-running VCSELs [91] and in the regime of
low-frequency fluctuations (LFFs) in the VCSEL with isotropic feedback [94, 98].
Tabaka et al. [99] also reported the cross correlation between the two orthogonal
polarizations in VCSELs with a short external cavity. An experimental study of the
effect of optical feedback on the magnitude of polarization dynamics anticorrelation
in VCSELs operating at a number of bias currents relative to the polarization
switching current has also been reported [100].

In order to further emphasize the scope for intervention in VCSEL dynamics,
reference is made to work on optical injection into multimode VCSELs [101],
the control VCSEL polarization by optical injection [102], and the appearance of
instabilities and chaos in optically injected VCSELs [103]. Polarization dynamics
in such configurations has also been investigated in detail both experimentally
[104, 105] and theoretically [106] where interest was focused on effects in modulated
lasers. The dynamics of polarization switching in modulated VCSELs has also been
examined experimentally [107, 108]. Optical injection has been experimentally
shown to be capable of effecting polarization switching in VCSELs [108] and as a
means for providing an optical flip-flop [109].

As shown above, both optical injection and optical feedback can cause VCSELs to
exhibit nonlinear dynamics including chaos. In the next section, the use of VCSELs
in optical chaos communications is discussed.

15.6
VCSEL Chaos and Synchronization and Message Transmission

The key concepts of chaos communications will be rehearsed in detail elsewhere in
this volume [110], and other summaries of these concepts have appeared elsewhere
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[111, 112]. In this chapter, only a brief summary is presented in order to motivate
relevant experiments performed with VCSELs.

The general concept of synchronization has a long historical tradition, and its
modern manifestations have been summarized in a major work [113]. The general
context for chaos synchronization in external cavity semiconductor lasers has been
delineated by Sivaprakasam and Masoller Ottieri [114] to which attention is directed
for further references. In the following sections, we outline experimental work on
chaos synchronization in external cavity lasers from the perspective of imple-
menting optical chaos communications. The generic experimental configuration
includes a transmitter or master laser and a receiver or slave laser. Unidirectional
optical coupling between the transmitter and slave laser enables synchronization
of the dynamics of the two lasers. (Such unidirectional coupling is effected by the
deployment of optical isolators between the lasers.) The transmitter laser is driven
into chaos by the application of optical feedback from an external mirror – an
external cavity laser. Two options arise in respect of the receiver laser: (i) it may
be configured as an external cavity laser and enter the chaotic regime via optical
feedback from the external cavity mirror or (ii) it may be a stand-alone laser whose
dynamics is affected via the optical coupling from the chaotic transmitter laser.
The former case is generally termed a closed-loop configuration, while the latter
is referred to as an open-loop configuration. In such experiments, several regimes
of nonlinear dynamics can be accessed. A specific regime that is convenient for
careful examination of laser dynamics is the so-called LFFs in which the laser
output power exhibits a sudden drop-out followed by a relatively long recovery
time. A sudden power drop-out recurs and the cycle is repeated, although it should
be emphasized that the repetition occurs without simple periodicity.

In essence, the approach, illustrated in Figure 15.4, is straightforward. It is
intended to transmit information between two lasers using a chaotic optical carrier.
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Figure 15.4 Schematic chaos communications system.
(Prepared by L.Larger; reprinted by permission.)
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The basic requirement for this is that optical chaos synchronization is effected
between the transmitter laser where the information originates and a receiver laser
which is the destination of the information. The driver for this work is the aim of
providing a secure communication where unauthorized recipients – eavesdroppers
– are unable to extract the transmitted message specifically because they cannot
reproduce the operating conditions to allow them to synchronize an eavesdropper
laser with the transmitter laser. In the case of an authorized recipient who is able
to synchronize to the transmitter chaos, the information added at the transmitter
can be subtracted at the receiver. Such an approach was first demonstrated by
Wiggeren and Roy using fiber laser [115]. A considerable research effort has been
made over the following decade to refine the basic approach. Here, emphasis is
given to the use of VCSELs for chaos communications.

VCSELs have many impressive characteristics, such as a low threshold current,
single-longitudinal operation, circular output-beam profile, and wafer-scale inte-
grability. It can be anticipated that because of the relatively low output powers
of VCSELs, chaos synchronization may require operation of the lasers well above
the threshold. A salient feature of VCSELs is their tendency to exhibit changes
in the emission polarization due to changes, for example, of bias current and
operating temperature. Polarization effects may therefore be expected to be of
some importance in VCSEL synchronization. Interest in implementing chaotic
communications using VCSELs is indicated by previous theoretical and experi-
mental work performed on chaotic synchronization in VCSELs. Spencer et al. [116]
investigated theoretically the synchronization of chaotic VCSELs. Later, Fujiwara
et al. [117] reported an experimental observation of chaotic synchronization in
mutually coupled stand-alone VCSELs.

Chaos synchronization was achieved experimentally in unidirectionally coupled
external cavity VCSELs operating in an open-loop regime [92]. Synchronization was
observed when the polarization of the transmitter is perpendicular to the polariza-
tion (x-polarization) of the free-running receiver. The transmitter output versus the
x-polarized receiver output power shows normal (positive-slope) synchronization.
However, inverse (negative-slope) synchronization was found to arise between the
transmitter output and the y-polarized receiver output power.

In this section, a relatively detailed discussion is presented of an experimental
demonstration of chaos synchronization in unidirectionally coupled VCSELs.
The transmitter was rendered chaotic by optical feedback, while the receiver
was a stand-alone VCSEL. One polarization component of the transmitter was
coupled into the receiver. Synchronization is observed when the polarization of the
transmitter is perpendicular to the polarization (x-polarization) of the free-running
receiver. In the experiment, the transmitter laser was biased so that almost all
the output power was in the y-polarized lasing mode. The laser was subjected to
sufficient optical feedback to enter a regime of chaotic dynamics. The x-polarized
component was excited and showed antiphase dynamics with the y-polarized
component. For the receiver laser, the laser bias was such that most of the
output power was contained in the x-polarized mode. The polarization of the
injected laser beam was rotated to perpendicular to that of the RL. Figure 15.5a
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Figure 15.5 Time trace of the injected beam and the
receiver laser (a) in the y-polarization and (b) in the
x-polarization. (Reprinted, with permission of the Optical
Society of America, Figure 15.2 from [92].)

shows the time traces of the injected beam and the RL in the y-polarization. The
time trace of the injected beam has been displaced vertically for clarity. These
time traces show evidence of synchronization between the injected beam and
y-polarization component of the RL. Figure 15.5b shows the time traces of the
injected beam and the RL in the x-polarization taken at a different time from that
in Figure 15.5a. The fluctuations in the time trace of the injected beam and the
RL time trace in the x-polarization are seen to be in antiphase, which is consistent
with previous observations of antiphase dynamics of orthogonal polarizations in
unstable VCSELs.

Synchronization is readily demonstrated by plotting the instantaneous injected
power against the receiver output power at the same time.

Figure 15.6a shows the injected power versus the y-polarization component of
the receiver. It demonstrates that good synchronization is obtained between the
injected beam and the y-polarization component of the receiver. Figure 15.6b shows
the injected power as a function of the x-polarization component of the receiver.
The injected power and the x-polarization component of the receiver also show
good synchronization; however, the gradient of the synchronization is negative.
Such synchronization has been termed ‘‘inverse synchronization.’’ The absolute
correlation coefficient is 0.768, which is lower than that of chaotic synchronization
between injected beam and the y-polarization component of the receiver. The
reason for this poorer correlation is that the y-polarization mode of the receiver
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ponent of the receiver. (Reprinted with permission of the
Optical Society of America, Figure 15.3 from [92].)

was locked to the transmitter’s frequency when the perpendicular polarization
injected beam with proper injection power and frequency detuning excited the
y-polarization mode of the receiver. The y-polarization output power of the receiver
and the injected beam show normal (positive-slope) chaos synchronization.

Having successfully demonstrated that VCSELs could be robustly chaos synchro-
nized, work was undertaken to show that chaotic message transmission could be
achieved [118]. Taking advantage of the polarization properties of VCSELs, a means
for enhancing the quality of chaos synchronization using polarization-preserved
injection was demonstrated [119]. Subsequent work with a higher-frequency VC-
SEL showed that gigahertz message transmission could be accomplished using a
chaotic carrier generated in an external cavity VCSEL [120].

15.7
Delay Deletion: Nullified Time of Flight

The foregoing work has illustrated the use of optical chaos synchronization in
order to enable message transmission using a chaotic optical carrier. It was pointed
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out that a sine qua non for such an accomplishment is the achievement of optical
chaos synchronization between the identified transmitter and receiver lasers. In
any practical configuration, such devices will be physically separated and usually
over a significant distance. In this case, there is a nonnegligible time of flight for the
light emitted by the transmitter to reach the receiver. That time flight will normally
result in a lag between the dynamics of the receiver laser relative to that of the
transmitter laser. Account must be taken of that lag in order to ensure high-quality
chaos synchronization.

Having explored synchronization between pairs of lasers, some effort was
directed at obtaining conditions wherein several lasers could be synchronized. Such
efforts were principally motivated by a wish to provide additional functionality in
chaos communications including chaotic message broadcasting [121] and chaotic
message relay [122] (Figure 15.7).

Chaos relay utilized cascaded synchronization of three chaotic semiconductor
lasers [123]. In exploring this configuration, it was appreciated that means were
available for affecting the lag time and effect a transition from lag to lead [124].
In that transition, a regime was accessed where there was no delay between the
dynamics of the first and third laser in the cascade. Such dynamics were termed
isochronous. Recalling that the lag in dynamics arises principally due to the physical
separation between the devices, the achievement of a zero delay can be expressed
as an elimination of time of flight effects [125, 126]. The underlying effects
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Figure 15.7 Schematic diagram of the experimental
setup. ML, master laser; IL, intermediate laser; SL, slave
laser. (Reprinted with permission of the Optical Society of
America, Figure 15.1 from [126].)
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are related to other dynamical phenomena including the so-called anticipatory
synchronization, which is described in detail elsewhere in this volume [65].

Other approaches to the elimination of time of flight time-lags have subsequently
been reported in the literature [127] (Figure 15.8).

15.8
Chaos Communications: Optimization and Robustness

In the previous two sections, it was noted that high-quality chaos synchronization
is required for successful optical chaos communications. Here, a brief discussion
is offered of recent work concerned with the determining the optimal operating
conditions for chaos communications. Also, attention is given to the impact on
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the quality of synchronization of power losses in chaotic optical communications
systems. The latter topic touches on the central issue of the security of message
transmission using chaos.

Careful theoretical work has been undertaken to determine the optimum time
delay for chaos synchronization [128]. In experimental work, for a given external
cavity length, optimization of synchronization is most easily achieved by varying
either the laser bias current or the laser operating temperature or both. Using the
laser drive current and operating temperature as control parameters, a detailed
experimental investigation has been carried out on the optimum conditions for
chaos synchronization and also to locate the optimum conditions for message
transmission [129]. The principal conclusion from this work is that that optimizing
chaos synchronization may not always ensure optimized message transmission.
This has some implications for the engineering application of this approach.
Specifically, it will be necessary to allow for adjustment of the operating conditions
of the transmitter and receiver lasers in situ. It should be emphasized, however, that
good-quality message extraction can be obtained at the conditions for optimized
chaos synchronization. In the case that the available message quality is sufficient
for a given communications system, the need for in situ adjustments of the lasers
can be obviated.

A persistent issue in the utilization of chaos in communications is the quantifica-
tion of the security of transmission. In early experiments, it was shown that chaos
synchronization could not be achieved between rather dissimilar lasers [130]. The
outstanding issue is a precise determination of the dissimilarity required between
lasers in order to ensure robustness against eavesdropper attack. One signature of
an eavesdropper attack is the attenuation of light coupled between the transmitter
and receiver lasers. A drop in the optical power coupled to the receiver laser could
also arise because of a physical failure in the communications without intervention
by an eavesdropper. Experimental work has been undertaken to determine the
robustness of a chaos communications to such power losses whether for benign
or malign reasons. In this way, identification has been made of the power loss at
which the system fails to operate due to a loss of chaos synchronization [131]. It
remains to be explored whether an eavesdropper can successfully extract a trans-
mitted message without causing power losses to the extent that causes noticeable
reductions in the quality of chaos synchronization. These results offer further
stimulus for exploring the nonlinear dynamics of semiconductor lasers.

15.9
Conclusion

Semiconductor lasers have been in existence for almost half a century. From the
earliest days of the laser, there has been an interest in their dynamical behavior.
Despite the apparent maturity of the field, the continued vitality of research into
semiconductor laser dynamics can be attributed to the remarkable innovations
that have been made, and continue to be made, in the design and functionality
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of laser diodes. From a research viewpoint, appreciation of the nonlinear optical
and nonlinear dynamical behavior of semiconductor lasers has opened one of the
richest veins for exploration. It is confidently predicted that challenging research
problems will continue to emerge in respect of such aspects of semiconductor
lasers. It is to be hoped that the celebration of a landmark birthday by one of the
younger contributors to this book may provide an occasion on which to review
progress made in that direction.
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accumulation layer 116
active region 4, 92
adiabatic elimination 17
– of atomic polarization 189
all-optical memory element 257
all-optical signal processing 246
all-to-all coupling 246
amplitude noise 203
amplitude–phase coupling 274
arbitrary phase 140
asymmetry parameter 47
asymptotic analysis 21, 144, 327
asymptotically stable 304
attractor 167, 271, 285, 287, 319
auger scattering 5, 6, 20
autocorrelation function 220

b
back injection 224
backward wave oscillators 131
bandpass filter 321
Bernoulli network 337, 347
Bernoulli units 335–337, 345, 346
bidirectional coupling 334, 336, 339
bidirectional transmission 239
bifurcation
– Andronov–Hopf 82, 83, 119, 145, 166,

170, 175, 189, 206, 255, 283, 324, 330
– Bogdanov–takens 165
– codimension-three 176
– codimension-two 167
– of limit cycles 263
– homoclinic loop 166, 176, 305, 306
– Hopf bifurcation bridge 64
– Hopf–Hopf bifurcation point 171
– inverse Andronov–Hopf 191
– inverse period-doubling 261

– Neimark–Sacker 203, 205, 210
– period doubling cascade 79
– period-doubling bifurcation 258, 319
– pitchfork 272
– saddle-node bifurcation 166, 169, 175, 191,

255
– saddle-node bifurcation of limit

cycles 166, 172, 175, 260
– saddle transition of Hopf curves 177
– stochastic d-bifurcation 271, 279, 280, 283
– torus bifurcation 83, 259
– transcritical 166, 169, 205, 255, 262
bifurcation analysis 79, 82, 161, 163, 164, 272
bifurcation diagram 172, 173, 175, 281, 308
bipartite network 247
bistability 42, 76, 80, 173, 256
bit error rate 336
Bloch gain 102
Bloch oscillations 118, 129
blowouts 305
Bogdanov–takens point 175
Boltzmann equation 6, 100
Born approximation
– first order 252
– second order 5
boundary condition 115, 185
– Ohmic boundary conditions 115
– periodic boundary conditions 187
broadband chaos 317, 318, 324
bubbling 231
bunching 129

c
capture rate 6, 148
carrier diffusion 358, 362
carrier heating 14
carrier lifetimes 13, 16, 27, 140
carrier transport 358

Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, First Edition. Edited by Kathy Lüdge.
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carrier–carrier scattering 5, 143
center manifold theory 273
chaos 111, 317, 359, 365
– period-doubling route to chaos

260
– quantum chaos 111
chaos communications 365, 366, 371
chaos modulations 336
chaos relay 370
chaos synchronization 239, 333, 334,

366, 372
chaotic attractor 287, 319
chaotic currents 115
chaotic dynamics 224, 277
chaotic electron transport 111
chaotic intensity dynamics 218
chaotic invariant sets 286
chaotic message transmission 369
chaotic network 333, 346
chaotic optical carrier 369
chaotic regime 193, 261, 285
chaotic spectrum 322
chaotic trajectory 230, 335
characteristic equation 146, 150, 155, 169,

170, 191, 255, 272, 302, 323
charge conservation 26
charge domain 111, 123–125,

127, 130
charge domain dynamics 115
chirp 193
circularly polarized light 363
class B lasers 23, 272
cluster state 293, 300, 302, 304,

308, 349
codimension-two points 175
coherence properties 74
coherent effects 3, 103
collapse of optical coherence 219
common noise 236
common optical external forcing 275
communication process 239
conductance 95, 101
confined QD levels 5
continuation method 82, 145, 164
continuous-time perturbation 287
convective instabilities 336
correlation scaling 219
Coulomb matrix elements 7
Coulomb scattering 4
coupled lasers
– bidirectionally coupled lasers 218,

220, 226
– coupled two-mode lasers 245
– delay-coupled lasers 217

– mutually coupled lasers 217, 341
coupled phase oscillators 298
coupling path 224
critical feedback strength 139, 140
critical slowing down 42, 43
cross-correlation function 222, 224, 225, 230,

236, 340, 343
cryptographic protocol 341
current continuity equation 113
current modulation 42, 231
– asymmetric triangular 44
– external pump modulation with different

frequencies 232
– high-frequency modulation 20
– periodic modulation 231
current oscillations 120, 121, 128, 130
current–voltage characteristics 119
cutoff frequency 21
cyclotron frequency 118

d
damping rate of ROs 23, 24, 139–158
delay differential equations 141, 148ff, 164,

184, 317, 334, 346
– integro-delay differential equation 321
delay-coupled lasers 217
delay-induced instabilities 219
delayed optical feedback 60, 68, 69, 72, 85,

139, 141, 161, 162, 218, 226, 231, 364
delocalization 111, 118
density matrix theory 101, 103
detailed balance 8
dimensionless variables 148, 153, 321
dipole matrix element 94, 105
discrete mapping 304
distributed feedback lasers 59
doped carrier reservoir 26
doping concentrations 26, 117
drift velocity 114, 118, 124, 130
diffusion 114, 355
drift–diffusion model 114
dynamical hysteresis 42
dynamical instability 218

e
eavesdropper 239, 339, 367, 372
eigenvalues see characteristic equation
Einstein coefficient 10
Einstein relation 358
elastic scattering time 114
electric field envelope 186
electron-scattering time 114, 361
electronic subbands 92
encoding scheme 50
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encrypted communication 238
encrypted key 239
energy confinement 15
energy flux density 105
energy losses 204
entrainment 231
equilibrium
– globally attracting 167
Esaki–Tsu approach 114
Esaki–Tsu domain 124, 126
Esaki–Tsu peak 129
excitability threshold 167
excitable SLSA 163, 171
excitatory response 298
excited states 9, 84
external cavity modes 149, 155
external forcing 279
external modulation 183, 231
external noise 235, 271
eye pattern diagrams 21, 22

f
Fabry–Perot laser 58, 248
Fabry–Perot modes 250
far-field emission 363
feedback 206, 226
feedback loop 163, 321
Fermi integrals 358
Fermi’s golden rule 93, 104
filter 345
firing rule 303
fixed point 328
Floquet exponents 272, 273, 284
Floquet multipliers 205
Fourier transformed field 185
frequency splitting 69

g
gain
– modal gain 93, 95, 105
– nonlinear gain 257, 258
– threshold gain 68
– unsaturated gain 187
gain profile 253, 363
gain spectrum 101, 102
gain window 196
Gaussian processes 275
Gaussian pulse 326
Gaussian white noises 40
ghost stochastic resonance 233
Ginzburg–Landau equation 208
global constraint 115, 116
Green’s function 103

h
Haus master equation 208
Haus model 184
– generalized Haus model 208
heating 98
heterostructure 4, 92, 357, 358
Hodgkin–Huxley neuron model 296
homoclinic loop 166, 176, 305, 306
Hopf normal form 273
horseshoes 272, 286
hysteresis 200
Hopf see bifurcation

i
Ikeda map 187
implicit function theorem 252
in-phase oscillation 128
index perturbation 251
induced emission 10
inhomogeneous broadening 20
initial conditions 173, 300
injection locking 73, 80, 83
injection-locking instabilities 217
injector region 92
instability boundaries 205
instability threshold 211, 324
integrate-and-fire (IF) oscillators 294
intensity fluctuations 220, 278
intensity–current characteristic 40
interband transitions 361
interdropout probability distribution

233
interface conditions 185
interminiband laser 96
intermittency 193
internal noise 235
interspike time 173
intersubband phonon scattering 97
intersubband transitions 360
invariant sets 285
isochronal solution 223, 235, 370
isochrone 274, 275

j
Jacobi matrix 255

k
key exchange protocol 238, 340
Kramers law 69
Kramers’ hopping 36

l
Landau–Stuart model 271, 273
– with white noise external forcing 283
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Lang–Kobayashi (LK) model 60, 222, 236,
334, 340, 364

laser linewidth 19, 75
laser Relay 228
lasing condition 249
lasing threshold 11, 42, 46, 205
laterally coupled laser arrays 217
lattice temperature 14, 114
lattice vibrations 98
leader–laggard dynamics 224
leading edge stability boundaries 202
leading order equations 23, 153
limit cycle 258, 272, 273
– overdamped limit cycle 272
– stable hyperbolic 286
linear gain 10
linear gain parameter 190
linear stability analysis see charcteristic

equation
linear threshold line 190, 201
linewidth enhancement factor 29, 64, 139,

148, 185, 193, 203, 223, 254, 272, 274
link 247
instability (local) 303
locked cavity modes 197
locking 75, 85, 197, 260
logic operations 50
logic stochastic resonance 36
logical operators 38
long delay regime 218
longitudinal modes 19, 58, 183
Lorentzian line shape 187
loss of noise synchrony 271
loss of synchrony 277
low-frequency dropouts 231
low-frequency fluctuation (LFF)

61, 218, 231, 337, 365
– type I LFF 63
– type II LFF 63
lumped element approach 184, 185
Lyapunov exponent 231, 279, 284,

285, 323, 347, 348

m
Mach–Zehnder modulator 319
magnetic field 111
map 299, 328
– Bernoulli map 334
– 1-D map 328
– 3-D map 205
– 4-D map 210
– return map 299, 306
master stability function 346
master–slave configuration 333

message decryption 239
message transmission 372
microscopically based rate equation

model 3, 142, 153
miniband 93, 97, 112
miniband transport 112
minimum linewidth mode 140
mirror relay 230
missing fundamental illusion 233
mode beating 64
mode competition 57, 58, 61, 67
mode hopping 69
mode locked laser 183
– fundamental ML solution 191, 193
– harmonic ML 191
– passively mode-locked laser 183, 184, 212
– Q-switching 161, 189, 193
– synchronously pumped actively ML lasers

196
mode-locking stability boundaries 200
modulation asymmetry 46
modulation response 16, 18, 28
monochromatic external forcing 276
monostability 40
Monte-Carlo simulations 100
multimode laser 57, 61, 188, 246
multimode optical injection 75
multipulse dynamics 319
mutual chaos pass filter 342
mutual injection 235
mutually coupled lasers 217, 341

n
nanolasers 364
network theory 247
network topology graph 247
networks 293
– chaotic network 333, 346
– complex networks 245, 246, 248
– excitable networks 233
New’s model 187
– generalized New’s model 203
New’s stability criterion 193, 197, 201, 205,

210
nodes 247
noise 35, 44, 48, 51–53, 67, 72, 162,

179, 235, 271, 275, 326
noise correlation time 236, 237
noise floor 323
noise modulation 235
noise realizations 282
noise-induced pulses 168
noise-to-signal ratio 343
non-KAM chaos 112



Index 385

nonequilibrium Green’s functions 101
nonexcitable SLSA 173
nonlinear delayed feedback 322
nonlinear stability analysis 318, 325
nonlinear transmission functions 319
nonlinear units 346
nullcline 327, 328
numerical continuation 179

o
optical bistability 62, 359
optical buffer memory 54
optical coupling 231
optical data communication 5
optical feedback see delayed optical feedback
optical injection 74, 77, 83, 85, 235,

253, 364, 365
optical-fiber coupling 246
optimal noise level 235
optoelectronic oscillator 318, 325
order parameter 142, 275, 300, 301
oscillating dynamics 258

p
parabolic dispersion 93
parabolic gain dispersion 207
Pauli blocking factor 141
Pauli matrices 249, 251
periodic blowouts 309
periodic ML solution 210
periodic orbits 318
periodic spiking 296
perturbation 197, 304
– index perturbation 251
– pulselike perturbation 325
perturbation mode 347
phase oscillators 298
phase-response function 293, 295, 297
phase-space stretching 275
phonon emission 97
Poisson’s equation 115
polarization bistability 35, 36
polarization dynamics 77
polarization mode hopping 69
polarization rotating optical feedback 64
polarization switching 36, 40, 60, 68, 365
polarized light 362
power dropouts 61, 85, 220, 231, 366
power spectrum 121, 122, 126, 318, 322
– featureless 318
private filter 345
private key 334
probability distribution function 232, 233,

278

pseudorandom digital messages 239
pseudorandom number 339
public channel communication 239, 334,

339, 340
public cryptography 345
pullback convergence 280, 282
pulsating state 329
pulse energy 203, 204
pulse group velocity 196
pulse package 67
pulse triggering 49
pulse-coupled oscillators 293, 294, 298

q
Q-switching instability 189, 202
Q-switching instability boundary 206, 210
quantized energy levels 360
quantum cascade laser 64, 91, 356, 360
quantum dot (QD) laser 3–30, 84, 139–142
quantum kinetic calculations 103
quantum protocol 340
quasi periodic dynamics 224, 259
quasi-Fermi distribution 7
quasiperiodicity 224
quiescent state 318, 323
quantum well (QW) laser model 29, 146

r
radiative recombination 143
random bit generators 339
random bit sequences 340, 342
random chaotic attractor 287
random dynamical system 279
random sink 279, 280, 282
random strange attractor 279, 280, 283
rate equations
– for QD laser subject to optical

feedback 141
– for solitary QW laser 146
– laser with saturable absorber (Yamada)

163, 188
– QD laser (3 variables) 29, 148
– QD laser (microscopic) 3, 153
– two mode VCSEL (spin flip model) 39, 71
refractory period 167
relaxation cascade 17
relaxation oscillations (ROs) 4, 23, 24,

42, 44, 139, 147, 273
relaxation processes 7, 14
reliability 52
resetting rule 303
residence time 69, 71
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resonant behavior 233
return map 299, 306
ring cavity 184
ring configuration 221
ring of unidirectionally coupled lasers 219
ring of units 348
rotational symmetry 272, 273
round-trip time 141
Routh–Hurwitz stability criteria 255
RPP dynamics 65
Runge–Kutta scheme 113

s
saddle-node see bifurcation
saddle point 302, 304
saturable absorber 161, 163, 183, 188
saturable gain 198, 203
saturation parameter 188
scattering
– elastic impurity scattering 100
– electron–electron scattering 5–8, 100
– optical phonon scattering 98
– phonon scattering 100, 114
scattering rates 24, 143
scattering time 23, 94, 97, 117
secret message 335
secure chaos communication 319
secure communication 333, 339
self-pulsations 167
self-sustained current oscillations 111
self-sustained oscillations 162, 173
semiclassical approach 103
semiconductor Bloch equations 4
separatrix 328
shear 275
short delay regime 218
short external cavity 64, 65, 140
side mode suppression ratios 253
single-mode laser 59
size distribution 20
slow saturable absorber 188
slow saturable absorber approximation 197
slow–fast system 163
spatial hole burning 362
spatiotemporal electron charge dynamics

122
spectral filtering 185, 187, 204, 209, 211
spectral filtering bandwidth 200
spectral properties 19
spiking events 295
spin-flip model 39, 82, 363
splay state 301
spontaneous emission 10, 48, 52
spontaneous emission noise 275, 276

square-wave solutions 319
stability analysis 41, 60, 128, 150, 151, 168,

231, 302, 308, 328, 347
stability boundary 139, 205
stability condition 157
stable manifold 167, 305
stimulated processes 10, 105
stochastic bifurcation 271
stochastic forcing 272, 279
stochastic hopping 41
stochastic logical operator 49
stochastic resonance 49, 72
stochastic-web 111, 118
strange attractor 285, 318
stretch-and-fold action 286, 287
success probability 52, 53
superlattice 92, 111, 112
switching dynamics 18
symmetry breaking 224
synchronization 72, 219, 366, 367
– chaos synchronization 239, 333, 334,

366, 372
– cluster synchronization 349
– complete synchronization 295, 337
– generalized synchronization 222
– identical synchronization 230
– incomplete synchronization 280
– inverse synchronization 368
– lack of synchronization 276
– lag synchronization 226
– leader–laggard synchronization 222
– localized synchronization 217
– noise synchronization 271, 275, 278, 280,

282
– out-of-phase synchronized 225
– partial synchronization 276
– secure synchronization 344
– trivial synchronization 276
– white noise synchronization 277
– zero-lag synchronization 228, 230, 236,

238, 340
synchronization manifold 231, 336,

346, 348
synchronization transitions 280
synchronized power dropouts 226

t
terahertz radiation 360
thermal energy 97
thermal noise 339
thermodynamic equilibrium 8
thermodynamic phase transition 276
third harmonic generation 362
time of flight 370
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time-delayed feedback 317, 335
time-delayed systems see delay differential

equations
timescale separation 24, 27, 61, 163
timing jitter 162
trailing edge instability boundaries 211
transcendental characteristic equation 169
transfer matrix 249–251
transition probability 6
transverse mode 59, 78, 362
transversely stable 231
traveling wave model 185
tunneling injection 98, 99
tunneling resonance 95
turn-on dynamics 11, 12
two-mode lasing 15, 84, 85, 245

u
unidirectional coupling 224, 339, 366

v
variational approach 209
vertical-cavity surface-emitting laser (VCSEL)

35, 59, 362, 364
voltage drop 116

w
wave-mixing 75
waveguide losses 95
weak chaos 349
white noise external forcing 277, 280

y
Yamada rate equations 163

z
zero-lag synchronization 228, 230,

236, 238, 340
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